Maths-
General
Easy

Question

L t subscript left parenthesis x rightwards arrow infinity right parenthesis invisible function application left parenthesis 11 x cubed minus 3 x plus 4 right parenthesis divided by left parenthesis 13 x cubed minus 5 x squared minus 7 right parenthesis

  1. left parenthesis negative 11 right parenthesis divided by 13
  2. 11 divided by 13
  3. 1 divided by 13
  4. left parenthesis negative 1 right parenthesis divided by 13

hintHint:

We are given a function. We have to find it's limit.

The correct answer is: 11 divided by 13


    The given function is f open parentheses x close parentheses equals fraction numerator 11 x cubed minus 3 x plus 4 over denominator 13 x cubed minus 5 x squared minus 7 end fraction
    We have to find limit of this function.
    limit as x rightwards arrow infinity of f open parentheses x close parentheses equals limit as x rightwards arrow infinity of fraction numerator 11 x cubed minus 3 x plus 4 over denominator 13 x cubed minus 5 x squared minus 7 end fraction
space w e space w i l l space d i v i d e space b o t h space n u m e r a t o r space a n d space d e n o m i n a t o r space b y space x cubed
limit as x rightwards arrow infinity of f left parenthesis x right parenthesis space equals limit as x rightwards arrow infinity of fraction numerator 11 begin display style x cubed over x cubed end style space minus 3 begin display style x over x cubed end style plus begin display style 4 over x cubed end style over denominator 13 begin display style x cubed over x cubed end style minus 5 begin display style x squared over x cubed end style minus begin display style 7 over x cubed end style end fraction
space space space space space space space space space space space space space space space space equals limit as x rightwards arrow infinity of fraction numerator 11 minus begin display style 3 over x squared end style plus begin display style 4 over x cubed end style over denominator 13 space minus begin display style 5 over x squared end style minus begin display style 7 over x cubed end style end fraction
space space space space space space space space space space space space space space space space equals fraction numerator 11 space minus begin display style 3 over left parenthesis infinity right parenthesis squared end style plus begin display style 4 over open parentheses infinity close parentheses cubed end style over denominator 13 space minus begin display style 5 over infinity squared end style space minus begin display style 7 over infinity cubed end style end fraction
space space space space space space space space space space space space space space space equals fraction numerator 11 space plus 0 plus 0 over denominator 13 plus 0 plus 0 end fraction
space space space space space space space space space space space space space space equals 11 over 13
space space space space space


space space space space space spaceThis is the final answer.

    For such questions, we should know different formulae of limit.

    Related Questions to study

    General
    Maths-

    The number of n-digit numbers,no two consecutive digits being the same is

    The number of n-digit numbers,no two consecutive digits being the same is

    Maths-General
    General
    Maths-

    A reserve of 12 railway station masters is to be divided into two groups of 6 each one for day duty and the other for night duty. The number of ways in which this can be done if two specified persons A,B should not be included in the same group is

    A reserve of 12 railway station masters is to be divided into two groups of 6 each one for day duty and the other for night duty. The number of ways in which this can be done if two specified persons A,B should not be included in the same group is

    Maths-General
    General
    Maths-

    L t subscript left parenthesis x rightwards arrow infinity right parenthesis invisible function application left parenthesis 8 vertical line x vertical line plus 3 x right parenthesis divided by left parenthesis 3 vertical line x vertical line minus 2 x right parenthesis

    For such questions, we should know different rules and formulae of limits.

    L t subscript left parenthesis x rightwards arrow infinity right parenthesis invisible function application left parenthesis 8 vertical line x vertical line plus 3 x right parenthesis divided by left parenthesis 3 vertical line x vertical line minus 2 x right parenthesis

    Maths-General

    For such questions, we should know different rules and formulae of limits.

    parallel
    General
    Maths-

    L t subscript left parenthesis x rightwards arrow infinity right parenthesis invisible function application left parenthesis 2 plus c o s squared invisible function application x right parenthesis divided by left parenthesis x plus 2007 right parenthesis

    L t subscript left parenthesis x rightwards arrow infinity right parenthesis invisible function application left parenthesis 2 plus c o s squared invisible function application x right parenthesis divided by left parenthesis x plus 2007 right parenthesis

    Maths-General
    General
    Maths-

    The value of  if blank space presuperscript n C subscript 3 colon blank to the power of n minus 1 end exponent C subscript 4 equals 8 colon 5 is

    The value of  if blank space presuperscript n C subscript 3 colon blank to the power of n minus 1 end exponent C subscript 4 equals 8 colon 5 is

    Maths-General
    General
    Maths-

    L t subscript left parenthesis x rightwards arrow infinity right parenthesis invisible function application left parenthesis √ left parenthesis x squared plus x right parenthesis minus x right parenthesis

    For such questions, we have to remember the different formulas of limit.

    L t subscript left parenthesis x rightwards arrow infinity right parenthesis invisible function application left parenthesis √ left parenthesis x squared plus x right parenthesis minus x right parenthesis

    Maths-General

    For such questions, we have to remember the different formulas of limit.

    parallel
    General
    Maths-

    L t subscript left parenthesis x rightwards arrow infinity right parenthesis left parenthesis √ left parenthesis x plus 1 right parenthesis minus √ x right parenthesis

    For such questions, we should remember the formulae of limit.

    L t subscript left parenthesis x rightwards arrow infinity right parenthesis left parenthesis √ left parenthesis x plus 1 right parenthesis minus √ x right parenthesis

    Maths-General

    For such questions, we should remember the formulae of limit.

    General
    Maths-

    L t subscript left parenthesis x rightwards arrow infinity right parenthesis invisible function application left parenthesis a subscript 0 plus a subscript 1 x to the power of 1 plus a subscript 2 x squared plus midline horizontal ellipsis plus a subscript n x to the power of n right parenthesis divided by left parenthesis b subscript 0 plus b subscript 1 x to the power of 1 plus b subscript 2 x squared plus midline horizontal ellipsis. plus b subscript m x to the power of w right parenthesis where a subscript n greater than 0 comma b subscript m greater than 0 and n greater than m space right square bracket

    L t subscript left parenthesis x rightwards arrow infinity right parenthesis invisible function application left parenthesis a subscript 0 plus a subscript 1 x to the power of 1 plus a subscript 2 x squared plus midline horizontal ellipsis plus a subscript n x to the power of n right parenthesis divided by left parenthesis b subscript 0 plus b subscript 1 x to the power of 1 plus b subscript 2 x squared plus midline horizontal ellipsis. plus b subscript m x to the power of w right parenthesis where a subscript n greater than 0 comma b subscript m greater than 0 and n greater than m space right square bracket

    Maths-General
    General
    Maths-

    4 L t subscript left parenthesis x rightwards arrow infinity right parenthesis invisible function application left square bracket √ left parenthesis x squared plus a x plus b right parenthesis minus x right square bracket

    For such questions, we should know different formulas of limit.

    4 L t subscript left parenthesis x rightwards arrow infinity right parenthesis invisible function application left square bracket √ left parenthesis x squared plus a x plus b right parenthesis minus x right square bracket

    Maths-General

    For such questions, we should know different formulas of limit.

    parallel
    General
    Maths-

    L t subscript left parenthesis n rightwards arrow infinity right parenthesis invisible function application sum subscript left parenthesis n equals 1 right parenthesis to the power of n   left square bracket 1 divided by left parenthesis left parenthesis 2 n plus 1 right parenthesis left parenthesis 2 n plus 3 right parenthesis right parenthesis right square bracket

    L t subscript left parenthesis n rightwards arrow infinity right parenthesis invisible function application sum subscript left parenthesis n equals 1 right parenthesis to the power of n   left square bracket 1 divided by left parenthesis left parenthesis 2 n plus 1 right parenthesis left parenthesis 2 n plus 3 right parenthesis right parenthesis right square bracket

    Maths-General
    General
    Maths-

    L t subscript left parenthesis n rightwards arrow infinity right parenthesis invisible function application left parenthesis 1 cubed plus 2 cubed plus 3 cubed plus midline horizontal ellipsis. plus n cubed right parenthesis divided by left parenthesis n squared left parenthesis n squared plus 1 right parenthesis right parenthesis

    L t subscript left parenthesis n rightwards arrow infinity right parenthesis invisible function application left parenthesis 1 cubed plus 2 cubed plus 3 cubed plus midline horizontal ellipsis. plus n cubed right parenthesis divided by left parenthesis n squared left parenthesis n squared plus 1 right parenthesis right parenthesis

    Maths-General
    General
    Maths-

    Let PQ and RS be tangents at the extremities of the diameter ‘PR’ of a circle of radius ‘r’. If PS and RQ intersect at a point ‘X’ on the circumference of the circle, then 2r equals :

    Let PQ and RS be tangents at the extremities of the diameter ‘PR’ of a circle of radius ‘r’. If PS and RQ intersect at a point ‘X’ on the circumference of the circle, then 2r equals :

    Maths-General
    parallel
    General
    Maths-

    L t subscript left parenthesis x rightwards arrow 0 right parenthesis invisible function application left parenthesis 6 to the power of x minus 3 to the power of x minus 2 to the power of x plus 1 right parenthesis divided by x squared

    For such questions, we should be know different formulas of limit.

    L t subscript left parenthesis x rightwards arrow 0 right parenthesis invisible function application left parenthesis 6 to the power of x minus 3 to the power of x minus 2 to the power of x plus 1 right parenthesis divided by x squared

    Maths-General

    For such questions, we should be know different formulas of limit.

    General
    Maths-

    If 5 x minus 12 y plus 10 equals 0 blankand 12 y minus 5 x plus 16 equals 0 blankare two tangents to a circles then radius of the circle is

    If 5 x minus 12 y plus 10 equals 0 blankand 12 y minus 5 x plus 16 equals 0 blankare two tangents to a circles then radius of the circle is

    Maths-General
    General
    Maths-

    The locus of center of a circle which passes through the origin and cuts off a length of 4 units from the lineblank x equals 3 blankis:

    The locus of center of a circle which passes through the origin and cuts off a length of 4 units from the lineblank x equals 3 blankis:

    Maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.