Question
In the figure QS and RS are the bisectors of and respectively then
-
-
-
- none of these
Hint:
In this question, we have to find the correct option. For that we will use some properties of triangle yo find the correct relation between SQ and SR.
The correct answer is:
PQ>PR
=PRQ>PQR [angle opposite to the longer side of triangle is greater]
=1/2 PRQ> 1/2PQR
=SRQ>SQR [as QR is the bisector of PQR and RS is the bisector of PRQ]
= SQ>SR [as side opposite to greater angle is greatest]
So, SQ>SR
Related Questions to study
If AB=AC and then
Here we used the concept of linear pair. When two lines cross at one point, a linear pair of angles is created. If the angles follow the intersection of the two lines in a straight line, they are said to be linear. A linear pair's total angles are always equal to 180°. So here the angle A is 50 degree.
If AB=AC and then
Here we used the concept of linear pair. When two lines cross at one point, a linear pair of angles is created. If the angles follow the intersection of the two lines in a straight line, they are said to be linear. A linear pair's total angles are always equal to 180°. So here the angle A is 50 degree.
In the figure then ACD=
Here we used the concept of linear pair and exterior angle property. When two lines cross at one point, a linear pair of angles is created. If the angles follow the intersection of the two lines in a straight line, they are said to be linear. A linear pair's total angles are always equal to 180°. So here the angle BCD is 110 degrees.
In the figure then ACD=
Here we used the concept of linear pair and exterior angle property. When two lines cross at one point, a linear pair of angles is created. If the angles follow the intersection of the two lines in a straight line, they are said to be linear. A linear pair's total angles are always equal to 180°. So here the angle BCD is 110 degrees.
=
=
If and then =
If and then =
If then
If then
The minimum value is
The minimum value is
In the adjoining figure, and then
Here we used the concept of linear pair. When two lines cross at one point, a linear pair of angles is created. If the angles follow the intersection of the two lines in a straight line, they are said to be linear. A linear pair's total angles are always equal to 180°. So here the angle b+c is 90 degrees.
In the adjoining figure, and then
Here we used the concept of linear pair. When two lines cross at one point, a linear pair of angles is created. If the angles follow the intersection of the two lines in a straight line, they are said to be linear. A linear pair's total angles are always equal to 180°. So here the angle b+c is 90 degrees.
In the figure, and then the value of x =
Here we used the concept of angles on same side of transversal. When two lines cross at one point, a linear pair of angles is created. If the angles follow the intersection of the two lines in a straight line, they are said to be linear. A linear pair's total angles are always equal to 180°. So here the value of x is 16.
In the figure, and then the value of x =
Here we used the concept of angles on same side of transversal. When two lines cross at one point, a linear pair of angles is created. If the angles follow the intersection of the two lines in a straight line, they are said to be linear. A linear pair's total angles are always equal to 180°. So here the value of x is 16.
In the following figure, the value of x =
Here we used the concept of linear pair and exterior angle property. When two lines cross at one point, a linear pair of angles is created. If the angles follow the intersection of the two lines in a straight line, they are said to be linear. A linear pair's total angles are always equal to 180°. So here the angle BCD is 110 degrees.
In the following figure, the value of x =
Here we used the concept of linear pair and exterior angle property. When two lines cross at one point, a linear pair of angles is created. If the angles follow the intersection of the two lines in a straight line, they are said to be linear. A linear pair's total angles are always equal to 180°. So here the angle BCD is 110 degrees.
Using information given in the following figure, the value of x and y is
Here we used the concept of linear pair and angle sum property of a triangle. When two lines cross at one point, a linear pair of angles is created. If the angles follow the intersection of the two lines in a straight line, they are said to be linear. A linear pair's total angles are always equal to 180°. So here the angles are 65°and 110°.
Using information given in the following figure, the value of x and y is
Here we used the concept of linear pair and angle sum property of a triangle. When two lines cross at one point, a linear pair of angles is created. If the angles follow the intersection of the two lines in a straight line, they are said to be linear. A linear pair's total angles are always equal to 180°. So here the angles are 65°and 110°.
In figure, the sides QP and RQ of are produced to points S and T respectively. If and then
Here we used the concept of linear pair and angle sum property of a triangle. When two lines cross at one point, a linear pair of angles is created. If the angles follow the intersection of the two lines in a straight line, they are said to be linear. A linear pair's total angles are always equal to 180°. So here the angle PRQ is 65 degrees.
In figure, the sides QP and RQ of are produced to points S and T respectively. If and then
Here we used the concept of linear pair and angle sum property of a triangle. When two lines cross at one point, a linear pair of angles is created. If the angles follow the intersection of the two lines in a straight line, they are said to be linear. A linear pair's total angles are always equal to 180°. So here the angle PRQ is 65 degrees.