Maths-
General
Easy

Question

L subscript x not stretchy rightwards arrow 0 end subscript fraction numerator x left parenthesis 1 plus a cos space x right parenthesis minus b sin space x over denominator x cubed end fraction equals 1 text  then  end text straight a equals comma straight b equals

  1. fraction numerator negative 5 over denominator 2 end fraction comma fraction numerator negative 3 over denominator 2 end fraction
  2. 5 over 2 3 over 2
  3. 2 over 3 5 over 2
  4. 3 over 2 1 half

hintHint:

We can apply L'Hopital's rule, also commonly spelled L'Hospital's rule, whenever direct substitution of a limit yields an indeterminate form. This means that the limit of a quotient of functions (i.e., an algebraic fraction) is equal to the limit of their derivatives.
In this question, we have to find value of L subscript x not stretchy rightwards arrow 0 end subscript fraction numerator x left parenthesis 1 plus a cos space x right parenthesis minus b sin space x over denominator x cubed end fraction equals 1
text  then  end text straight a equals ? comma straight b equals ?.

The correct answer is: fraction numerator negative 5 over denominator 2 end fraction comma fraction numerator negative 3 over denominator 2 end fraction


    L subscript x not stretchy rightwards arrow 0 end subscript fraction numerator x left parenthesis 1 plus a cos space x right parenthesis minus b sin space x over denominator x cubed end fraction equals 1
text  then  end text straight a equals ? comma straight b equals ?
    L subscript x not stretchy rightwards arrow 0 end subscript fraction numerator x plus a x cos space x minus b sin space x over denominator x cubed end fraction equals 1 space left parenthesis W e space a r e space a p p l y i n g space L minus H space r u l e space right parenthesis
L subscript x not stretchy rightwards arrow 0 end subscript fraction numerator 1 plus a cos space x minus x a sin space x minus b cos space x over denominator 3 x squared end fraction equals 1 space
bold left parenthesis bold italic A bold italic l bold italic s bold italic o bold space bold italic w bold italic e bold space bold italic t bold italic h bold italic a bold italic t bold space bold sin bold italic x bold space bold equals bold space bold italic x bold minus fraction numerator bold x to the power of bold 3 over denominator bold 3 bold factorial end fraction bold plus fraction numerator bold x to the power of bold 5 over denominator bold 5 bold factorial end fraction bold. bold. bold. bold. bold space bold comma bold space bold cos bold italic x bold space bold equals bold 1 bold minus fraction numerator bold x to the power of bold 2 over denominator bold 2 bold factorial end fraction bold plus fraction numerator bold x to the power of bold 4 over denominator bold 4 bold factorial end fraction bold. bold. bold. bold. bold space bold right parenthesis
L subscript x not stretchy rightwards arrow 0 end subscript fraction numerator 1 plus left parenthesis a minus b right parenthesis left parenthesis bold 1 bold minus fraction numerator bold x to the power of bold 2 over denominator bold 2 bold factorial end fraction bold plus fraction numerator bold x to the power of bold 4 over denominator bold 4 bold factorial end fraction bold. bold. bold. right parenthesis minus a left parenthesis bold space bold italic x to the power of bold 2 bold minus fraction numerator bold x to the power of 4 over denominator bold 3 bold factorial end fraction bold plus fraction numerator bold x to the power of 6 over denominator bold 5 bold factorial end fraction bold. bold. bold. bold. bold right parenthesis over denominator 3 x squared end fraction equals 1
f o r space t h e space s o l u t i o n space o f space l i m i t space w e space c a n space w r i t e space.
L subscript x not stretchy rightwards arrow 0 end subscript fraction numerator 1 plus left parenthesis a minus b right parenthesis left parenthesis 1 bold minus fraction numerator bold x to the power of bold 2 over denominator bold 2 bold factorial end fraction bold right parenthesis bold space bold minus bold italic a bold italic x to the power of bold 2 over denominator 3 x squared end fraction space plus L subscript x not stretchy rightwards arrow 0 end subscript fraction numerator left parenthesis a minus b right parenthesis left parenthesis fraction numerator bold x to the power of bold 4 over denominator bold 4 bold factorial end fraction bold. bold. bold. right parenthesis minus a left parenthesis bold minus fraction numerator bold x to the power of 4 over denominator bold 3 bold factorial end fraction bold plus fraction numerator bold x to the power of 6 over denominator bold 5 bold factorial end fraction bold. bold. bold. bold. bold right parenthesis over denominator 3 x squared end fraction space equals 1
o r comma space L subscript x not stretchy rightwards arrow 0 end subscript fraction numerator left parenthesis 1 plus a minus b right parenthesis plus left parenthesis a minus b right parenthesis left parenthesis bold minus fraction numerator bold x to the power of bold 2 over denominator bold 2 bold factorial end fraction bold right parenthesis bold space bold minus bold italic a bold italic x to the power of bold 2 over denominator 3 x squared end fraction space equals 1
f o r space t h e space g i v e n space s o l u t i o n space left parenthesis 1 plus a minus b right parenthesis equals 0 space & space left parenthesis a minus b right parenthesis left parenthesis bold minus fraction numerator 1 over denominator bold 2 bold factorial end fraction bold right parenthesis bold space bold minus bold italic a bold equals bold 3
bold space bold italic b bold minus bold 3 bold italic a bold equals bold 6 bold space bold space bold left parenthesis bold italic g bold italic i bold italic v bold italic e bold italic n bold space bold left parenthesis bold 1 bold plus bold italic a bold minus bold italic b bold right parenthesis bold equals bold 0 bold right parenthesis
bold 1 bold minus bold 2 bold italic a bold space bold equals bold 6
bold italic a bold equals fraction numerator bold minus bold 5 over denominator bold 2 end fraction bold space bold italic t bold italic h bold italic e bold italic n bold space bold italic b bold equals fraction numerator bold minus bold 3 over denominator bold 2 end fraction

    We can only apply the L’Hospital’s rule if the direct substitution returns an indeterminate form, that means 0 over 0 or fraction numerator plus-or-minus infinity over denominator plus-or-minus infinity end fraction.

    Related Questions to study

    General
    physics-

    The correct relation is.

    The correct relation is.

    physics-General
    General
    physics-

    A vessel whose bottom has round holes with diameter of 0.1 mm is filled with water. The maximum height to which the water can be filled without leakage is
    (S.T. of water == fraction numerator 75 text  dyne  end text over denominator cm end fraction straight g equals 1000 straight m over straight s squared times)

    A vessel whose bottom has round holes with diameter of 0.1 mm is filled with water. The maximum height to which the water can be filled without leakage is
    (S.T. of water == fraction numerator 75 text  dyne  end text over denominator cm end fraction straight g equals 1000 straight m over straight s squared times)

    physics-General
    General
    Maths-

    L t subscript x not stretchy rightwards arrow 0 end subscript fraction numerator x 10 to the power of x minus x over denominator 1 minus cos space x end fraction equals

    We can only apply the L’Hospital’s rule if the direct substitution returns an indeterminate form, that means 0 over 0 or fraction numerator plus-or-minus infinity over denominator plus-or-minus infinity end fraction.

    L t subscript x not stretchy rightwards arrow 0 end subscript fraction numerator x 10 to the power of x minus x over denominator 1 minus cos space x end fraction equals

    Maths-General

    We can only apply the L’Hospital’s rule if the direct substitution returns an indeterminate form, that means 0 over 0 or fraction numerator plus-or-minus infinity over denominator plus-or-minus infinity end fraction.

    parallel
    General
    Maths-

    L t subscript n not stretchy rightwards arrow straight infinity end subscript fraction numerator n open parentheses 1 cubed plus 2 cubed plus midline horizontal ellipsis times plus n cubed close parentheses squared over denominator open parentheses 1 squared plus 2 squared plus midline horizontal ellipsis plus n squared close parentheses cubed end fraction equals

    In general, we say that f(x) tends to a real limit l as x tends to infinity if, however small a distance we choose, f(x) gets closer than that distance to l and stays closer as x increases. f(x) = infinity

    L t subscript n not stretchy rightwards arrow straight infinity end subscript fraction numerator n open parentheses 1 cubed plus 2 cubed plus midline horizontal ellipsis times plus n cubed close parentheses squared over denominator open parentheses 1 squared plus 2 squared plus midline horizontal ellipsis plus n squared close parentheses cubed end fraction equals

    Maths-General

    In general, we say that f(x) tends to a real limit l as x tends to infinity if, however small a distance we choose, f(x) gets closer than that distance to l and stays closer as x increases. f(x) = infinity

    General
    physics-

    A capillary tube at radius R  is immersed in water and water rises in it to a height H. Mass of water in the capillary tube is M. If the radius of the tube is doubled. Mass of water that will rise in the, capillary tube will now be

    A capillary tube at radius R  is immersed in water and water rises in it to a height H. Mass of water in the capillary tube is M. If the radius of the tube is doubled. Mass of water that will rise in the, capillary tube will now be

    physics-General
    General
    Maths-

    Lt subscript x not stretchy rightwards arrow 0 end subscript fraction numerator 1 over denominator sin squared space x end fraction minus fraction numerator 1 over denominator space x squared end fraction

    Direct substitution can sometimes be used to calculate the limits for functions involving trigonometric functions.

    Lt subscript x not stretchy rightwards arrow 0 end subscript fraction numerator 1 over denominator sin squared space x end fraction minus fraction numerator 1 over denominator space x squared end fraction

    Maths-General

    Direct substitution can sometimes be used to calculate the limits for functions involving trigonometric functions.

    parallel
    General
    physics-

    If the excess pressure inside a soap bubble is balanced by oil column of height 2 mm then the surface tension of soap solution will be C r equals 1 space a n d space d e n s i t y space d equals 0.8 g m divided by c c right parenthesis

    If the excess pressure inside a soap bubble is balanced by oil column of height 2 mm then the surface tension of soap solution will be C r equals 1 space a n d space d e n s i t y space d equals 0.8 g m divided by c c right parenthesis

    physics-General
    General
    maths-

    The quadratic equation whose roots are I and m wherel equals lim for theta not stretchy rightwards arrow 0 of   open parentheses fraction numerator 3 sin space theta minus 4 sin cubed space theta over denominator theta end fraction close parentheses m equals lim for theta not stretchy rightwards arrow 0 of   open parentheses fraction numerator 2 tan space theta over denominator theta open parentheses 1 minus tan squared space theta close parentheses end fraction close parentheses is

    The quadratic equation whose roots are I and m wherel equals lim for theta not stretchy rightwards arrow 0 of   open parentheses fraction numerator 3 sin space theta minus 4 sin cubed space theta over denominator theta end fraction close parentheses m equals lim for theta not stretchy rightwards arrow 0 of   open parentheses fraction numerator 2 tan space theta over denominator theta open parentheses 1 minus tan squared space theta close parentheses end fraction close parentheses is

    maths-General
    General
    physics-

    Two bubbles A and B (A>B) are joined through a narrow tube than,

    Two bubbles A and B (A>B) are joined through a narrow tube than,

    physics-General
    parallel
    General
    Maths-

    L subscript x not stretchy rightwards arrow 0 end subscript fraction numerator tan cubed begin display style space end style x minus sin cubed space x over denominator x cubed end fraction

    Direct substitution can sometimes be used to calculate the limits for functions involving trigonometric functions.

    L subscript x not stretchy rightwards arrow 0 end subscript fraction numerator tan cubed begin display style space end style x minus sin cubed space x over denominator x cubed end fraction

    Maths-General

    Direct substitution can sometimes be used to calculate the limits for functions involving trigonometric functions.

    General
    physics-

    In capillary pressure below the curved surface at water will be

    In capillary pressure below the curved surface at water will be

    physics-General
    General
    Maths-

    L subscript x not stretchy rightwards arrow 0 end subscript fraction numerator sin begin display style space end style open parentheses pi cos squared space x close parentheses over denominator x squared end fraction is equal to

    The substitution rule for calculating limits is a method of finding limits, by simply substituting the value of x with the point at which we want to calculate the limit.

    L subscript x not stretchy rightwards arrow 0 end subscript fraction numerator sin begin display style space end style open parentheses pi cos squared space x close parentheses over denominator x squared end fraction is equal to

    Maths-General

    The substitution rule for calculating limits is a method of finding limits, by simply substituting the value of x with the point at which we want to calculate the limit.

    parallel
    General
    physics-

    A spherical drop of coater has radius 1 mm if surface tension of context is 70 cross times 10 to the power of negative 3 end exponent straight N divided by straight m  difference of pressures betweca inside and outside of the spherical drop is

    A spherical drop of coater has radius 1 mm if surface tension of context is 70 cross times 10 to the power of negative 3 end exponent straight N divided by straight m  difference of pressures betweca inside and outside of the spherical drop is

    physics-General
    General
    Maths-

    L t subscript x plus 0 end subscript fraction numerator left parenthesis 1 minus cos space 2 x right parenthesis left parenthesis 3 plus cos space x right parenthesis over denominator x tan space 4 x end fraction text  is equal to  end text

    The substitution rule for calculating limits is a method of finding limits, by simply substituting the value of x with the point at which we want to calculate the limit.

    L t subscript x plus 0 end subscript fraction numerator left parenthesis 1 minus cos space 2 x right parenthesis left parenthesis 3 plus cos space x right parenthesis over denominator x tan space 4 x end fraction text  is equal to  end text

    Maths-General

    The substitution rule for calculating limits is a method of finding limits, by simply substituting the value of x with the point at which we want to calculate the limit.

    General
    Maths-

    Lt subscript x not stretchy rightwards arrow 0 end subscript space fraction numerator tan begin display style space end style x minus sin space x over denominator x cubed end fraction equals

    Lt subscript x not stretchy rightwards arrow 0 end subscript space fraction numerator tan begin display style space end style x minus sin space x over denominator x cubed end fraction equals

    Maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.