Chemistry-
General
Easy

Question

Cr subscript 2 straight O subscript 7 superscript 2 minus end superscript plus straight X not stretchy ⟶ with straight H to the power of ⊖ on top Cr to the power of 3 plus end exponent plus straight H subscript 2 straight O plus oxidised product of , in the above reaction cannot be

  1. straight C subscript 2 straight O subscript 4 superscript 2 minus end superscript
  2. Fe to the power of 2 plus end exponent
  3. SO subscript 4 superscript 2 minus end superscript
  4. straight S to the power of 2 minus end exponent

The correct answer is: SO subscript 4 superscript 2 minus end superscript

Related Questions to study

General
maths-

Let a, b, c, d element of R. Then the cubic equation of the type a x cubed plus b x squared plus c x plus d equals 0 has either one root real or all three roots are real. But in case of trigonometric equations of the type sin cubed space x plus b sin squared space x plus c sin space x plus d equals 0 can possess several solutions depending upon the domain of x. To solve an equation of the type a cos space theta plus b sin space theta equals c. The equation can be written as cos space left parenthesis theta minus alpha right parenthesis equals c divided by square root of open parentheses a squared plus b squared close parentheses end root The solution is theta equals 2 straight n pi plus alpha plus-or-minus beta where tan space alpha = b divided by a comma cos space beta equals c divided by square root of open parentheses a squared plus b squared close parentheses end root

On the domain [–straight pistraight pi] the equation 4 sin cubed space x plus 2 sin squared space x minus 2 sin space x minus 1 equals 0 possess

Let a, b, c, d element of R. Then the cubic equation of the type a x cubed plus b x squared plus c x plus d equals 0 has either one root real or all three roots are real. But in case of trigonometric equations of the type sin cubed space x plus b sin squared space x plus c sin space x plus d equals 0 can possess several solutions depending upon the domain of x. To solve an equation of the type a cos space theta plus b sin space theta equals c. The equation can be written as cos space left parenthesis theta minus alpha right parenthesis equals c divided by square root of open parentheses a squared plus b squared close parentheses end root The solution is theta equals 2 straight n pi plus alpha plus-or-minus beta where tan space alpha = b divided by a comma cos space beta equals c divided by square root of open parentheses a squared plus b squared close parentheses end root

On the domain [–straight pistraight pi] the equation 4 sin cubed space x plus 2 sin squared space x minus 2 sin space x minus 1 equals 0 possess

maths-General
General
maths-

cos to the power of 4 invisible function application pi over 8 plus cos to the power of 4 invisible function application fraction numerator 3 pi over denominator 8 end fraction plus cos to the power of 4 invisible function application fraction numerator 5 pi over denominator 8 end fraction plus cos to the power of 4 invisible function application fraction numerator 7 pi over denominator 8 end fraction equals

cos to the power of 4 invisible function application pi over 8 plus cos to the power of 4 invisible function application fraction numerator 3 pi over denominator 8 end fraction plus cos to the power of 4 invisible function application fraction numerator 5 pi over denominator 8 end fraction plus cos to the power of 4 invisible function application fraction numerator 7 pi over denominator 8 end fraction equals

maths-General
General
chemistry-

 The products (A) and (B) are:

 The products (A) and (B) are:

chemistry-General
parallel
General
maths-

If w is a complex cube root of unity, then the matrix A = open square brackets table row 1 cell w to the power of 2 end exponent end cell w row cell w to the power of 2 end exponent end cell w 1 row w 1 cell w to the power of 2 end exponent end cell end table close square brackets is a-

If w is a complex cube root of unity, then the matrix A = open square brackets table row 1 cell w to the power of 2 end exponent end cell w row cell w to the power of 2 end exponent end cell w 1 row w 1 cell w to the power of 2 end exponent end cell end table close square brackets is a-

maths-General
General
maths-

Matrix [1 2] open parentheses open square brackets table row cell negative 2 end cell 5 row 3 2 end table close square brackets open square brackets table row 1 row 2 end table close square brackets close parentheses is equal to-

Matrix [1 2] open parentheses open square brackets table row cell negative 2 end cell 5 row 3 2 end table close square brackets open square brackets table row 1 row 2 end table close square brackets close parentheses is equal to-

maths-General
General
maths-

If A –2B = open square brackets table row 1 5 row 3 7 end table close square brackets and 2A – 3B = open square brackets table row cell negative 2 end cell 5 row 0 7 end table close square brackets, then matrix B is equal to–

If A –2B = open square brackets table row 1 5 row 3 7 end table close square brackets and 2A – 3B = open square brackets table row cell negative 2 end cell 5 row 0 7 end table close square brackets, then matrix B is equal to–

maths-General
parallel
General
maths-

The value of x for which the matrix A = open square brackets table row 2 0 7 row 0 1 0 row 1 cell negative 2 end cell 1 end table close square brackets is inverse of B = open square brackets table row cell negative x end cell cell 14 x end cell cell 7 x end cell row 0 1 0 row x cell negative 4 x end cell cell negative 2 x end cell end table close square brackets is

The value of x for which the matrix A = open square brackets table row 2 0 7 row 0 1 0 row 1 cell negative 2 end cell 1 end table close square brackets is inverse of B = open square brackets table row cell negative x end cell cell 14 x end cell cell 7 x end cell row 0 1 0 row x cell negative 4 x end cell cell negative 2 x end cell end table close square brackets is

maths-General
General
maths-

The greatest possible difference between two of the roots if  theta element of  [0, 2straight pi] is

The greatest possible difference between two of the roots if  theta element of  [0, 2straight pi] is

maths-General
General
maths-

Statement I : open square brackets table row 5 0 0 row 0 3 0 row 0 0 2 end table close square brackets is a diagonal matrix.
Statement II : A square matrix A = (aij) is a diagonal matrix if aij = 0 .for all straight i times not equal to straight j

Statement I : open square brackets table row 5 0 0 row 0 3 0 row 0 0 2 end table close square brackets is a diagonal matrix.
Statement II : A square matrix A = (aij) is a diagonal matrix if aij = 0 .for all straight i times not equal to straight j

maths-General
parallel
General
maths-

Let A be a 2 × 2 matrix with real entries. Let I be the 2 × 2 identity. Denote by tr(A), The sum of diagonal entries of A, Assume that A2 = I.
Statement-I :If Anot equal toI and Anot equal to– I, then det  A= – 1
Statement-II : If A not equal to I and A not equal to – I then tr(A)not equal to0.

Let A be a 2 × 2 matrix with real entries. Let I be the 2 × 2 identity. Denote by tr(A), The sum of diagonal entries of A, Assume that A2 = I.
Statement-I :If Anot equal toI and Anot equal to– I, then det  A= – 1
Statement-II : If A not equal to I and A not equal to – I then tr(A)not equal to0.

maths-General
General
maths-

Suppose A equals open square brackets table row 1 0 row 0 cell negative 1 end cell end table close square brackets, B equals open square brackets table row 2 0 row 0 cell negative 2 end cell end table close square brackets let x be a 2×2 matrix such that X to the power of straight primeAX = B
Statement-I : X is non singular & |x| = ±2
Statement-II : X is a singular matrix

Suppose A equals open square brackets table row 1 0 row 0 cell negative 1 end cell end table close square brackets, B equals open square brackets table row 2 0 row 0 cell negative 2 end cell end table close square brackets let x be a 2×2 matrix such that X to the power of straight primeAX = B
Statement-I : X is non singular & |x| = ±2
Statement-II : X is a singular matrix

maths-General
General
maths-

If 2 tan invisible function application A equals 3 tan invisible function application B comma then fraction numerator sin invisible function application 2 B over denominator 5 minus cos invisible function application 2 B end fractionis equal to

If 2 tan invisible function application A equals 3 tan invisible function application B comma then fraction numerator sin invisible function application 2 B over denominator 5 minus cos invisible function application 2 B end fractionis equal to

maths-General
parallel
General
maths-

Statement-I : If A & B are two 3×3 matrices such that AB = 0, then A = 0 or B = 0
Statement-II : If A, B & X are three 3×3 matrices such that AX = B, |A| not equal to0, then X = A–1B

Statement-I : If A & B are two 3×3 matrices such that AB = 0, then A = 0 or B = 0
Statement-II : If A, B & X are three 3×3 matrices such that AX = B, |A| not equal to0, then X = A–1B

maths-General
General
maths-

Assertion (A): The inverse of the matrix open square brackets table row 1 3 5 row 2 6 10 row 9 8 7 end table close square brackets does not exist.
Reason (R) : The matrix open square brackets table row 1 3 5 row 2 6 10 row 9 8 7 end table close square brackets is singular. [becauseopen vertical bar table row 1 3 5 row 2 6 10 row 9 8 7 end table close vertical bar = 0, since R2 = 2R1]

Assertion (A): The inverse of the matrix open square brackets table row 1 3 5 row 2 6 10 row 9 8 7 end table close square brackets does not exist.
Reason (R) : The matrix open square brackets table row 1 3 5 row 2 6 10 row 9 8 7 end table close square brackets is singular. [becauseopen vertical bar table row 1 3 5 row 2 6 10 row 9 8 7 end table close vertical bar = 0, since R2 = 2R1]

maths-General
General
maths-

Assertion (A): open square brackets table row 5 0 0 row 0 3 0 row 0 0 9 end table close square brackets is a diagonal matrix
Reason (R) : A square matrix A = (aij) is a diagonal matrix if aij = 0 for all i not equal to j.

Assertion (A): open square brackets table row 5 0 0 row 0 3 0 row 0 0 9 end table close square brackets is a diagonal matrix
Reason (R) : A square matrix A = (aij) is a diagonal matrix if aij = 0 for all i not equal to j.

maths-General
parallel

card img

With Turito Academy.

card img

With Turito Foundation.

card img

Get an Expert Advice From Turito.

Turito Academy

card img

With Turito Academy.

Test Prep

card img

With Turito Foundation.