Maths-
General
Easy

Question

In a certain town 25% families own a cell phone, 15% families own a scooter and 65% families own neither a cell phone nor a scooter. If 1500 families own both a cell phone and a scooter, then the total number of families in the town is

  1. 10000
  2. 20000
  3. 30000
  4. 40000

The correct answer is: 30000


    Let the total population of town be x
    .
    table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell therefore fraction numerator 25 x over denominator 100 end fraction plus fraction numerator 15 x over denominator 100 end fraction minus 1500 plus fraction numerator 65 x over denominator 100 end fraction equals x end cell row cell not stretchy rightwards double arrow fraction numerator 105 x over denominator 100 end fraction minus x equals 1500 end cell row cell not stretchy rightwards double arrow fraction numerator 5 x over denominator 100 end fraction equals 1500 end cell row cell not stretchy rightwards double arrow x equals 30000 end cell end table

    Related Questions to study

    General
    maths-

    If sets A and B are defined as A equals open curly brackets left parenthesis x comma y right parenthesis colon y equals 1 over x comma 0 not equal to x element of R close curly brackets comma B equals left curly bracket left parenthesis x comma y right parenthesis colon y equals negative x comma x element of R right curly bracket , then

    If sets A and B are defined as A equals open curly brackets left parenthesis x comma y right parenthesis colon y equals 1 over x comma 0 not equal to x element of R close curly brackets comma B equals left curly bracket left parenthesis x comma y right parenthesis colon y equals negative x comma x element of R right curly bracket , then

    maths-General
    General
    maths-

    If A equals left curly bracket 1 comma 2 comma 3 right curly bracket comma B left curly bracket 3 comma 4 right curly bracket comma C left curly bracket 4 comma 5 comma 6 right curly bracket . Then, A union left parenthesis B intersection C right parenthesis is

    If A equals left curly bracket 1 comma 2 comma 3 right curly bracket comma B left curly bracket 3 comma 4 right curly bracket comma C left curly bracket 4 comma 5 comma 6 right curly bracket . Then, A union left parenthesis B intersection C right parenthesis is

    maths-General
    General
    maths-

    left curly bracket n left parenthesis n plus 1 right parenthesis left parenthesis 2 n plus 1 right parenthesis colon n element of Z right curly bracket subset of

    left curly bracket n left parenthesis n plus 1 right parenthesis left parenthesis 2 n plus 1 right parenthesis colon n element of Z right curly bracket subset of

    maths-General
    parallel
    General
    maths-

    Let Y equals left curly bracket 1 comma 2 comma 3 comma 4 comma 5 right curly bracket comma A left curly bracket 1 comma 2 right curly bracket comma B equals left curly bracket 3 comma 4 comma 5 right curly bracket and ϕ denotes null set. If left parenthesis A cross times B right parenthesis denotes cartesian product of the sets A and B ; then left parenthesis Y cross times A right parenthesis intersection left parenthesis Y cross times B right parenthesis is

    Let Y equals left curly bracket 1 comma 2 comma 3 comma 4 comma 5 right curly bracket comma A left curly bracket 1 comma 2 right curly bracket comma B equals left curly bracket 3 comma 4 comma 5 right curly bracket and ϕ denotes null set. If left parenthesis A cross times B right parenthesis denotes cartesian product of the sets A and B ; then left parenthesis Y cross times A right parenthesis intersection left parenthesis Y cross times B right parenthesis is

    maths-General
    General
    maths-

    If  n left parenthesis A right parenthesis equals 4 comma n left parenthesis B right parenthesis equals 3 comma n left parenthesis A cross times B cross times C right parenthesis equals 240, then n left parenthesis C right parenthesis is equal to

    If  n left parenthesis A right parenthesis equals 4 comma n left parenthesis B right parenthesis equals 3 comma n left parenthesis A cross times B cross times C right parenthesis equals 240, then n left parenthesis C right parenthesis is equal to

    maths-General
    General
    maths-

    For any two sets A and B, A minus left parenthesis A minus B right parenthesis equals

    For any two sets A and B, A minus left parenthesis A minus B right parenthesis equals

    maths-General
    parallel
    General
    maths-

    If two sets A and B are having 99 elements in common, then the number of elements common to each of the sets , A x B and B x A are

    If two sets A and B are having 99 elements in common, then the number of elements common to each of the sets , A x B and B x A are

    maths-General
    General
    maths-

    For any two sets A and B, if A intersection X equals B intersection X equals ϕ and A union X equals B union X for some set X , then

    For any two sets A and B, if A intersection X equals B intersection X equals ϕ and A union X equals B union X for some set X , then

    maths-General
    General
    maths-

    If  is a set with 10 elements and A equals left curly bracket left parenthesis x comma y right parenthesis colon x comma y element of S comma x not equal to y right curly bracket, then the number of elements in A is

    If  is a set with 10 elements and A equals left curly bracket left parenthesis x comma y right parenthesis colon x comma y element of S comma x not equal to y right curly bracket, then the number of elements in A is

    maths-General
    parallel
    General
    maths-

    Let A and B be two sets, then left parenthesis A union B right parenthesis to the power of straight prime union open parentheses A to the power of straight prime intersection B close parentheses is equal to

    Let A and B be two sets, then left parenthesis A union B right parenthesis to the power of straight prime union open parentheses A to the power of straight prime intersection B close parentheses is equal to

    maths-General
    General
    maths-

    If sec invisible function application open parentheses fraction numerator x squared minus y squared over denominator x squared plus y squared end fraction close parentheses equals e to the power of a comma text  then  end text fraction numerator d y over denominator d x end fraction is equal to

    If sec invisible function application open parentheses fraction numerator x squared minus y squared over denominator x squared plus y squared end fraction close parentheses equals e to the power of a comma text  then  end text fraction numerator d y over denominator d x end fraction is equal to

    maths-General
    General
    maths-

    If f left parenthesis x right parenthesis has a derivative at x equals a text , then  end text lim for x not stretchy rightwards arrow a of   fraction numerator x f left parenthesis a right parenthesis minus a f left parenthesis x right parenthesis over denominator x minus a end fraction is equal to

    If f left parenthesis x right parenthesis has a derivative at x equals a text , then  end text lim for x not stretchy rightwards arrow a of   fraction numerator x f left parenthesis a right parenthesis minus a f left parenthesis x right parenthesis over denominator x minus a end fraction is equal to

    maths-General
    parallel
    General
    maths-

    The value of fraction numerator d over denominator d x end fraction open square brackets open parentheses fraction numerator tan squared invisible function application 2 x minus tan squared invisible function application x over denominator 1 minus tan squared invisible function application 2 x tan squared invisible function application x end fraction close parentheses cot invisible function application 3 x close square brackets is

    The value of fraction numerator d over denominator d x end fraction open square brackets open parentheses fraction numerator tan squared invisible function application 2 x minus tan squared invisible function application x over denominator 1 minus tan squared invisible function application 2 x tan squared invisible function application x end fraction close parentheses cot invisible function application 3 x close square brackets is

    maths-General
    General
    maths-

    The derivative of e to the power of x cubed end exponent with respect to log  is

    The derivative of e to the power of x cubed end exponent with respect to log  is

    maths-General
    General
    maths-

    The derivative of sin to the power of negative 1 end exponent invisible function application open parentheses fraction numerator 2 x over denominator 1 plus x squared end fraction close parentheses with respect to cos to the power of negative 1 end exponent invisible function application open parentheses fraction numerator 1 minus x squared over denominator 1 plus x squared end fraction close parentheses is

    The derivative of sin to the power of negative 1 end exponent invisible function application open parentheses fraction numerator 2 x over denominator 1 plus x squared end fraction close parentheses with respect to cos to the power of negative 1 end exponent invisible function application open parentheses fraction numerator 1 minus x squared over denominator 1 plus x squared end fraction close parentheses is

    maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.