Maths-
General
Easy

Question

Assertion (A): 2 to the power of 4 n end exponent minus 2 to the power of n end exponent left parenthesis 7 n plus 1 right parenthesis is divisible by the square of14 where n is a natural number Reason (R): left parenthesis 1 plus x right parenthesis to the power of n end exponent equals 1 plus to the power of n end exponent C subscript 1 end subscript x plus horizontal ellipsis. plus to the power of n end exponent C subscript n end subscript x to the power of n end exponent for all n element of N

  1. Both A and R are true and R is correct explanation of A    
  2. Both A and R are true but R is not correct explanation of A    
  3. A is true but R is false    
  4. A is false but R is true    

The correct answer is: Both A and R are true and R is correct explanation of A


    Related Questions to study

    General
    maths-

    Assertion (A): Number of the dissimilar terms
    in the sum of expansion left parenthesis x plus a right parenthesis to the power of 102 end exponent plus left parenthesis x minus a right parenthesis to the power of 102 end exponent is 206
    Reason (R): Number of terms in the expansion of left parenthesis x plus b right parenthesis to the power of n end exponent is n+1

    Assertion (A): Number of the dissimilar terms
    in the sum of expansion left parenthesis x plus a right parenthesis to the power of 102 end exponent plus left parenthesis x minus a right parenthesis to the power of 102 end exponent is 206
    Reason (R): Number of terms in the expansion of left parenthesis x plus b right parenthesis to the power of n end exponent is n+1

    maths-General
    General
    Maths-

    I f A equals left parenthesis 300 right parenthesis to the power of 600 end exponent comma B=600!, C equals left parenthesis 200 right parenthesis to the power of 600 end exponent then

    I f A equals left parenthesis 300 right parenthesis to the power of 600 end exponent comma B=600!, C equals left parenthesis 200 right parenthesis to the power of 600 end exponent then

    Maths-General
    General
    maths-

    The arrangement of the following with respect to coefficient of x to the power of r end exponent in ascending order where vertical line x vertical line less than 1 A) x to the power of 5 end exponent in left parenthesis 1 minus x right parenthesis to the power of negative 3 end exponent where vertical line x vertical line less than 1 B) x to the power of 7 end exponent i n left parenthesis 1 plus 2 x plus 3 x to the power of 2 end exponent plus horizontal ellipsis infinity right parenthesiswhere vertical line x vertical line less than 1 C) x to the power of 10 end exponent in left parenthesis 1 plus x right parenthesis to the power of negative 1 end exponent where vertical line x vertical line less than 1 D) x to the power of 3 end exponent in left parenthesis 1 plus x right parenthesis to the power of 4 end exponent

    The arrangement of the following with respect to coefficient of x to the power of r end exponent in ascending order where vertical line x vertical line less than 1 A) x to the power of 5 end exponent in left parenthesis 1 minus x right parenthesis to the power of negative 3 end exponent where vertical line x vertical line less than 1 B) x to the power of 7 end exponent i n left parenthesis 1 plus 2 x plus 3 x to the power of 2 end exponent plus horizontal ellipsis infinity right parenthesiswhere vertical line x vertical line less than 1 C) x to the power of 10 end exponent in left parenthesis 1 plus x right parenthesis to the power of negative 1 end exponent where vertical line x vertical line less than 1 D) x to the power of 3 end exponent in left parenthesis 1 plus x right parenthesis to the power of 4 end exponent

    maths-General
    parallel
    General
    maths-

    A: If the term independent of x in the expansion of left parenthesis square root of x minus fraction numerator n over denominator x to the power of 2 end exponent end fraction right parenthesis to the power of 10 end exponent is 405, then n=
    B: If the third term in the expansion of left parenthesis fraction numerator 1 over denominator n end fraction plus n to the power of l o g subscript n end subscript 10 end exponent right parenthesis to the power of 5 end exponent is 1000, then n=(here n<10)
    C: If in the binomial expansion of left parenthesis 1 plus x right parenthesis to the power of n end exponent comma the coefficients of 5thcomma 6th and 7th terms are in A.P then n= [Arranging the values of n in ascending order]

    A: If the term independent of x in the expansion of left parenthesis square root of x minus fraction numerator n over denominator x to the power of 2 end exponent end fraction right parenthesis to the power of 10 end exponent is 405, then n=
    B: If the third term in the expansion of left parenthesis fraction numerator 1 over denominator n end fraction plus n to the power of l o g subscript n end subscript 10 end exponent right parenthesis to the power of 5 end exponent is 1000, then n=(here n<10)
    C: If in the binomial expansion of left parenthesis 1 plus x right parenthesis to the power of n end exponent comma the coefficients of 5thcomma 6th and 7th terms are in A.P then n= [Arranging the values of n in ascending order]

    maths-General
    General
    maths-

    The arrangement of the following binomial expansions in the ascending order of their independent terms A left parenthesis square root of x minus fraction numerator 3 over denominator x to the power of 2 end exponent end fraction right parenthesis to the power of 10 end exponent B left parenthesis x plus fraction numerator 1 over denominator x end fraction right parenthesis to the power of 6 end exponent C left parenthesis 1 plus x right parenthesis to the power of 32 end exponent D left parenthesis fraction numerator 3 over denominator 2 end fraction x to the power of 2 end exponent minus fraction numerator 1 over denominator 3 x end fraction right parenthesis to the power of 9 end exponent

    The arrangement of the following binomial expansions in the ascending order of their independent terms A left parenthesis square root of x minus fraction numerator 3 over denominator x to the power of 2 end exponent end fraction right parenthesis to the power of 10 end exponent B left parenthesis x plus fraction numerator 1 over denominator x end fraction right parenthesis to the power of 6 end exponent C left parenthesis 1 plus x right parenthesis to the power of 32 end exponent D left parenthesis fraction numerator 3 over denominator 2 end fraction x to the power of 2 end exponent minus fraction numerator 1 over denominator 3 x end fraction right parenthesis to the power of 9 end exponent

    maths-General
    General
    maths-

    A:blank to the power of 2 n end exponent c subscript n end subscript equals C subscript 0 end subscript superscript 2 end superscript plus C subscript 1 end subscript superscript 2 end superscript plus C subscript 2 end subscript superscript 2 end superscript plus C subscript 3 end subscript superscript 2 end superscript plus horizontal ellipsis horizontal ellipsis horizontal ellipsis.. plus C subscript n end subscript superscript 2 end superscript B:blank to the power of 2 n end exponent c subscript n end subscript equals term independent of x in left parenthesis 1 plus x right parenthesis to the power of n end exponent left parenthesis 1 plus fraction numerator 1 over denominator x end fraction right parenthesis to the power of n end exponent C:blank to the power of 2 n end exponent c subscript n end subscript equals fraction numerator 1.3.5.7 horizontal ellipsis horizontal ellipsis horizontal ellipsis horizontal ellipsis. left parenthesis 2 n minus 1 right parenthesis over denominator n factorial end fraction then

    A:blank to the power of 2 n end exponent c subscript n end subscript equals C subscript 0 end subscript superscript 2 end superscript plus C subscript 1 end subscript superscript 2 end superscript plus C subscript 2 end subscript superscript 2 end superscript plus C subscript 3 end subscript superscript 2 end superscript plus horizontal ellipsis horizontal ellipsis horizontal ellipsis.. plus C subscript n end subscript superscript 2 end superscript B:blank to the power of 2 n end exponent c subscript n end subscript equals term independent of x in left parenthesis 1 plus x right parenthesis to the power of n end exponent left parenthesis 1 plus fraction numerator 1 over denominator x end fraction right parenthesis to the power of n end exponent C:blank to the power of 2 n end exponent c subscript n end subscript equals fraction numerator 1.3.5.7 horizontal ellipsis horizontal ellipsis horizontal ellipsis horizontal ellipsis. left parenthesis 2 n minus 1 right parenthesis over denominator n factorial end fraction then

    maths-General
    parallel
    General
    maths-

    I The sum of the binomial coefficients of the expansion open parentheses table row 1 row cell x plus negative end cell row x end table close parentheses is 2 to the power of n end exponent
    II The term independent of x in the expansion of open parentheses table row 1 row cell x plus negative end cell row x end table close parentheses is 0 when is even.
    Which of the above statements is correct?

    I The sum of the binomial coefficients of the expansion open parentheses table row 1 row cell x plus negative end cell row x end table close parentheses is 2 to the power of n end exponent
    II The term independent of x in the expansion of open parentheses table row 1 row cell x plus negative end cell row x end table close parentheses is 0 when is even.
    Which of the above statements is correct?

    maths-General
    General
    maths-

    S subscript 1 end subscript: The fourth term in the expansion of left parenthesis 2 x plus fraction numerator 1 over denominator x to the power of 2 end exponent end fraction right parenthesis to the power of 9 end exponent is equal to the second term in the expansion of left parenthesis 1 plus x to the power of 2 end exponent right parenthesis to the power of 84 end exponent then the positive value of x is fraction numerator 1 over denominator 2 square root of 3 end fraction
    S subscript 2 end subscript:In the expansion of left parenthesis x to the power of 2 end exponent plus fraction numerator a over denominator x to the power of 3 end exponent end fraction right parenthesis to the power of 10 end exponent, the coefficients of x to the power of 5 end exponent and x to the power of 15 end exponent are equal, then the positive value of a is 8

    S subscript 1 end subscript: The fourth term in the expansion of left parenthesis 2 x plus fraction numerator 1 over denominator x to the power of 2 end exponent end fraction right parenthesis to the power of 9 end exponent is equal to the second term in the expansion of left parenthesis 1 plus x to the power of 2 end exponent right parenthesis to the power of 84 end exponent then the positive value of x is fraction numerator 1 over denominator 2 square root of 3 end fraction
    S subscript 2 end subscript:In the expansion of left parenthesis x to the power of 2 end exponent plus fraction numerator a over denominator x to the power of 3 end exponent end fraction right parenthesis to the power of 10 end exponent, the coefficients of x to the power of 5 end exponent and x to the power of 15 end exponent are equal, then the positive value of a is 8

    maths-General
    General
    maths-

    S1: If the coefficients of x to the power of 6 end exponent and x to the power of 7 end exponent in the expansion of left parenthesis fraction numerator x over denominator 4 end fraction plus 3 right parenthesis to the power of n end exponent are equal, then the number ofdivisors ofn is 12.
    S2: If the expansion of left parenthesis x to the power of 2 end exponent plus fraction numerator 2 over denominator x end fraction right parenthesis to the power of n end exponent for positive integer n has 13 th term independent of x Then the sum of divisors of n is 39.

    S1: If the coefficients of x to the power of 6 end exponent and x to the power of 7 end exponent in the expansion of left parenthesis fraction numerator x over denominator 4 end fraction plus 3 right parenthesis to the power of n end exponent are equal, then the number ofdivisors ofn is 12.
    S2: If the expansion of left parenthesis x to the power of 2 end exponent plus fraction numerator 2 over denominator x end fraction right parenthesis to the power of n end exponent for positive integer n has 13 th term independent of x Then the sum of divisors of n is 39.

    maths-General
    parallel
    General
    maths-

    I Three consecutive binomial coefficients cannot be in GP.
    II Three consecutive binomial coefficients cannot be in A.P.
    Which of the above statement is correct?

    I Three consecutive binomial coefficients cannot be in GP.
    II Three consecutive binomial coefficients cannot be in A.P.
    Which of the above statement is correct?

    maths-General
    General
    maths-

    I The no of distinct terms in the expansion of left parenthesis x subscript 1 end subscript plus x subscript 2 end subscript plus horizontal ellipsis. plus x subscript n end subscript right parenthesis to the power of 3 end exponent is n plus 2 c subscript 3 end subscript
    II The no of irrational terms in the expansion left parenthesis 2 to the power of 1 divided by 5 end exponent plus 3 to the power of 1 divided by 10 end exponent right parenthesis to the power of 55 end exponent is 55

    I The no of distinct terms in the expansion of left parenthesis x subscript 1 end subscript plus x subscript 2 end subscript plus horizontal ellipsis. plus x subscript n end subscript right parenthesis to the power of 3 end exponent is n plus 2 c subscript 3 end subscript
    II The no of irrational terms in the expansion left parenthesis 2 to the power of 1 divided by 5 end exponent plus 3 to the power of 1 divided by 10 end exponent right parenthesis to the power of 55 end exponent is 55

    maths-General
    General
    maths-

    If left parenthesis 3 plus x to the power of 2008 end exponent plus x to the power of 2009 end exponent right parenthesis to the power of 2010 end exponent equals a subscript 0 end subscript plus a subscript 1 end subscript x plus a subscript 2 end subscript x to the power of 2 end exponent plus plus a subscript n end subscript x to the power of n end exponent then a subscript 0 end subscript minus fraction numerator a subscript 1 end subscript over denominator 2 end fraction minus fraction numerator a subscript 2 end subscript over denominator 2 end fraction plus a subscript 3 end subscript minus fraction numerator a subscript 4 end subscript over denominator 2 end fraction minus fraction numerator a subscript 5 end subscript over denominator 2 end fraction plus a subscript 6 end subscript

    If left parenthesis 3 plus x to the power of 2008 end exponent plus x to the power of 2009 end exponent right parenthesis to the power of 2010 end exponent equals a subscript 0 end subscript plus a subscript 1 end subscript x plus a subscript 2 end subscript x to the power of 2 end exponent plus plus a subscript n end subscript x to the power of n end exponent then a subscript 0 end subscript minus fraction numerator a subscript 1 end subscript over denominator 2 end fraction minus fraction numerator a subscript 2 end subscript over denominator 2 end fraction plus a subscript 3 end subscript minus fraction numerator a subscript 4 end subscript over denominator 2 end fraction minus fraction numerator a subscript 5 end subscript over denominator 2 end fraction plus a subscript 6 end subscript

    maths-General
    parallel
    General
    maths-

    If left curly bracket x right curly bracket denotes fractional part of x then left curly bracket fraction numerator 2 to the power of 2003 end exponent over denominator 17 end fraction right curly bracket equals

    If left curly bracket x right curly bracket denotes fractional part of x then left curly bracket fraction numerator 2 to the power of 2003 end exponent over denominator 17 end fraction right curly bracket equals

    maths-General
    General
    maths-

    404 C subscript 4 end subscript minus C subscript 4 end subscript. C subscript 1 end subscript plus 2024 minus 1014 equals

    404 C subscript 4 end subscript minus C subscript 4 end subscript. C subscript 1 end subscript plus 2024 minus 1014 equals

    maths-General
    General
    Maths-

    The number of rational terms in the expansion of left parenthesis 1 plus square root of 2 plus root index 3 of 3 end root right parenthesis to the power of 6 end exponent is

    The number of rational terms in the expansion of left parenthesis 1 plus square root of 2 plus root index 3 of 3 end root right parenthesis to the power of 6 end exponent is

    Maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.