Physics-
General
Easy
Question
The potential energy for the force if the zero of the potential energy is to be chosen at the point (2, 2, 2) is
The correct answer is:
Related Questions to study
physics-
Consider a roller coaster with a circular loop. A roller coaster car starts from rest from the top of a hill which is 5 m higher than the top of the loop. It rolls down the hill and through the loop. What must the radius of the loop be so that the passengers of the car will feel at highest point, as if they their normal weight ?
Consider a roller coaster with a circular loop. A roller coaster car starts from rest from the top of a hill which is 5 m higher than the top of the loop. It rolls down the hill and through the loop. What must the radius of the loop be so that the passengers of the car will feel at highest point, as if they their normal weight ?
physics-General
physics-
A pendulum bob of mass m is suspended at rest. A constant horizontal force starts acting on it. The maximum angular deflection of the string is
A pendulum bob of mass m is suspended at rest. A constant horizontal force starts acting on it. The maximum angular deflection of the string is
physics-General
physics-
4 A car is moving along a hilly road as shown (side view). The coefficient of static friction between the tyres and pavement is constant and the car maintains a steady speed. If, at one of the points shown the driver applies the brakes as hard as possible without making the tires slip, the magnitude of the frictional force immediately after the brakes are applied will be maximum if the car was at
4 A car is moving along a hilly road as shown (side view). The coefficient of static friction between the tyres and pavement is constant and the car maintains a steady speed. If, at one of the points shown the driver applies the brakes as hard as possible without making the tires slip, the magnitude of the frictional force immediately after the brakes are applied will be maximum if the car was at
physics-General
physics-
One end of a light rope is tied directly to the ceiling. A man of mass M initially at rest on the ground starts climbing the rope hand over upto a height . From the time he starts at rest on the ground to the time he is hanging at rest at a height , how much work done on the man by the rope ?
One end of a light rope is tied directly to the ceiling. A man of mass M initially at rest on the ground starts climbing the rope hand over upto a height . From the time he starts at rest on the ground to the time he is hanging at rest at a height , how much work done on the man by the rope ?
physics-General
physics-
A block of mass 1 kg is placed on a rough horizontal surface. A spring is attached to the block whose other end is joined to a rigid wall,as shown in the figure. A horizontal force is applied on the block so that it remains at rest while the spring is elongated by x. Let be the maximum and minimum values of force F for which the block remains in equilibrium. For a particular x, = 2 N. Also shown is the variation of , the elongation of the spring The value of , if x = 3 cm is :
A block of mass 1 kg is placed on a rough horizontal surface. A spring is attached to the block whose other end is joined to a rigid wall,as shown in the figure. A horizontal force is applied on the block so that it remains at rest while the spring is elongated by x. Let be the maximum and minimum values of force F for which the block remains in equilibrium. For a particular x, = 2 N. Also shown is the variation of , the elongation of the spring The value of , if x = 3 cm is :
physics-General
physics-
A block of mass 1 kg is placed on a rough horizontal surface. A spring is attached to the block whose other end is joined to a rigid wall,as shown in the figure. A horizontal force is applied on the block so that it remains at rest while the spring is elongated by x. Let be the maximum and minimum values of force F for which the block remains in equilibrium. For a particular x, = 2 N. Also shown is the variation of , the elongation of the spring The spring constant of the spring is:
A block of mass 1 kg is placed on a rough horizontal surface. A spring is attached to the block whose other end is joined to a rigid wall,as shown in the figure. A horizontal force is applied on the block so that it remains at rest while the spring is elongated by x. Let be the maximum and minimum values of force F for which the block remains in equilibrium. For a particular x, = 2 N. Also shown is the variation of , the elongation of the spring The spring constant of the spring is:
physics-General
physics-
A block of mass 1 kg is placed on a rough horizontal surface. A spring is attached to the block whose other end is joined to a rigid wall,as shown in the figure. A horizontal force is applied on the block so that it remains at rest while the spring is elongated by x be the maximum and minimum values of force F for which the block remains in equilibrium. For a particular x, . Also shown is the variation of Fmax+ Fmin versus x, the elongation of the spring The coefficient of friction between the block and the horizontal surface is :
A block of mass 1 kg is placed on a rough horizontal surface. A spring is attached to the block whose other end is joined to a rigid wall,as shown in the figure. A horizontal force is applied on the block so that it remains at rest while the spring is elongated by x be the maximum and minimum values of force F for which the block remains in equilibrium. For a particular x, . Also shown is the variation of Fmax+ Fmin versus x, the elongation of the spring The coefficient of friction between the block and the horizontal surface is :
physics-General
physics-
Two bodies A and B of masses 10 kg and 5 kg are placed very slightly separated as shown in figure. The coefficients of friction between the floor and the blocks are as . Block A is pushed by an external force F. The value of F can be changed. When the welding between block A and ground breaks, block A will start pressing block B and when welding of B also breaks, block B will start pressing the vertical wall If F = 50 N, the friction force acting between block B and ground will be :
Two bodies A and B of masses 10 kg and 5 kg are placed very slightly separated as shown in figure. The coefficients of friction between the floor and the blocks are as . Block A is pushed by an external force F. The value of F can be changed. When the welding between block A and ground breaks, block A will start pressing block B and when welding of B also breaks, block B will start pressing the vertical wall If F = 50 N, the friction force acting between block B and ground will be :
physics-General
physics-
Two bodies A and B of masses 10 kg and 5 kg are placed very slightly separated as shown in figure. The coefficients of friction between the floor and the blocks are as . Block A is pushed by an external force F. The value of F can be changed. When the welding between block A and ground breaks, block A will start pressing block B and when welding of B also breaks, block B will start pressing the vertical wall If , with how much force does block A presses the block B
Two bodies A and B of masses 10 kg and 5 kg are placed very slightly separated as shown in figure. The coefficients of friction between the floor and the blocks are as . Block A is pushed by an external force F. The value of F can be changed. When the welding between block A and ground breaks, block A will start pressing block B and when welding of B also breaks, block B will start pressing the vertical wall If , with how much force does block A presses the block B
physics-General
physics-
STATEMENT-1 : A fixed wedge of inclination lies on horizontal table. x and y axes are drawn on inclined surface as shown, such that x axis is horizontal and y-axis is along line of greatest slope. A block of mass m is placed (at rest) on inclined surface at origin. The coefficient of friction between block and wedge is , such that . Then a force applied to block parallel to inclined surface and along x-axis can move the block along x-axis
STATEMENT-2 : To move the block placed at rest on rough inclined surface along the inclined surface, the net force on block (except frictional force) should be greater than . (N = normal reaction on block).
STATEMENT-1 : A fixed wedge of inclination lies on horizontal table. x and y axes are drawn on inclined surface as shown, such that x axis is horizontal and y-axis is along line of greatest slope. A block of mass m is placed (at rest) on inclined surface at origin. The coefficient of friction between block and wedge is , such that . Then a force applied to block parallel to inclined surface and along x-axis can move the block along x-axis
STATEMENT-2 : To move the block placed at rest on rough inclined surface along the inclined surface, the net force on block (except frictional force) should be greater than . (N = normal reaction on block).
physics-General
chemistry-
Borax is converted into B by steps Borax I and II reagents are
Borax is converted into B by steps Borax I and II reagents are
chemistry-General
chemistry-
The following diagram shows the arrangement of lattice points with and . Choose the correct options
The following diagram shows the arrangement of lattice points with and . Choose the correct options
chemistry-General
chemistry-
In the cubic lattice given below, the three distances between the atoms , and are, respectively,
In the cubic lattice given below, the three distances between the atoms , and are, respectively,
chemistry-General
chemistry-
In an f cc unit cell, atoms are numbered as shown below. The atoms not touching each other are (Atom numbered 3 is face center of front face)
In an f cc unit cell, atoms are numbered as shown below. The atoms not touching each other are (Atom numbered 3 is face center of front face)
chemistry-General
chemistry-
In body-centered cubic lattice given below, the three distances AB, AC, and AA'' are
In body-centered cubic lattice given below, the three distances AB, AC, and AA'' are
chemistry-General