Physics-
General
Easy
Question
A box of mass m is released from rest at position 1 on the frictionless curved track shown. It slides a distance d along the track in time t to reach position 2, dropping a vertical distance h. Let v and a be the instantaneous speed and instantaneous acceleration, respectively, of the box at position 2. Which of the following equations is valid for this situation?
- h = vt
-
-
-
The correct answer is:
Related Questions to study
physics-
Imagine a situation in which the horizontal surface of block M0 is smooth and its vertical surface is rough with a coefficient of friction m.
In above problem, the value(s) of F for which M and m are stationary with respect to M0</sub
Imagine a situation in which the horizontal surface of block M0 is smooth and its vertical surface is rough with a coefficient of friction m.
In above problem, the value(s) of F for which M and m are stationary with respect to M0</sub
physics-General
physics-
In figure, two blocks M and m are tied together with an inextensible and light string. The mass M is placed on a rough horizontal surface with coefficient of friction m and the mass m is hanging vertically against a smooth vertical wall. The pulley is frictionless.
Choose the correct statement(s)
In figure, two blocks M and m are tied together with an inextensible and light string. The mass M is placed on a rough horizontal surface with coefficient of friction m and the mass m is hanging vertically against a smooth vertical wall. The pulley is frictionless.
Choose the correct statement(s)
physics-General
physics-
The coefficient of friction between 4kg and 5 kg blocks is 0.2 and between 5kg block and ground is 0.1 respectively. Choose the correct statements
The coefficient of friction between 4kg and 5 kg blocks is 0.2 and between 5kg block and ground is 0.1 respectively. Choose the correct statements
physics-General
physics-
Adjoining figure shows a force of 40 N acting at 30° to the horizontal on a body of mass 5 kg resting on a smooth horizontal surface. Assuming that the acceleration of free–fall is 10 ms–2, which of the following statements A, B, C, D, E is (are) correct?
1) The horizontal force acting on the body is 20 N
2) The weight of the 5 kg mass acts vertically downwards
3) The net vertical force acting on the body is 30 N
Adjoining figure shows a force of 40 N acting at 30° to the horizontal on a body of mass 5 kg resting on a smooth horizontal surface. Assuming that the acceleration of free–fall is 10 ms–2, which of the following statements A, B, C, D, E is (are) correct?
1) The horizontal force acting on the body is 20 N
2) The weight of the 5 kg mass acts vertically downwards
3) The net vertical force acting on the body is 30 N
physics-General
physics-
A student calculates the acceleration of m1 in figure shown as Which assumption is not required to do this calculation.
A student calculates the acceleration of m1 in figure shown as Which assumption is not required to do this calculation.
physics-General
physics-
Two persons of mass m1 and m2 are standing at the two ends A and B respectively, of a trolley of mass M as shown.
Choose the incorrect statement, if m1 = m2 = m and both the persons jump one by one, then
Two persons of mass m1 and m2 are standing at the two ends A and B respectively, of a trolley of mass M as shown.
Choose the incorrect statement, if m1 = m2 = m and both the persons jump one by one, then
physics-General
physics-
Two persons of mass m1 and m2 are standing at the two ends A and B respectively, of a trolley of mass M as shown.
When both the persons jump simultaneously with urel with respect to the trolley, then the velocity of the trolley is
Two persons of mass m1 and m2 are standing at the two ends A and B respectively, of a trolley of mass M as shown.
When both the persons jump simultaneously with urel with respect to the trolley, then the velocity of the trolley is
physics-General
physics-
Two persons of mass m1 and m2 are standing at the two ends A and B respectively, of a trolley of mass M as shown.
When both the persons jump simultaneously with same speed then
Two persons of mass m1 and m2 are standing at the two ends A and B respectively, of a trolley of mass M as shown.
When both the persons jump simultaneously with same speed then
physics-General
physics-
Two persons of mass m1 and m2 are standing at the two ends A and B respectively, of a trolley of mass M as shown.
When only the person standing at B jumps from the trolley towards right while the person at A keeps standing, then
Two persons of mass m1 and m2 are standing at the two ends A and B respectively, of a trolley of mass M as shown.
When only the person standing at B jumps from the trolley towards right while the person at A keeps standing, then
physics-General
physics-
Two persons of mass m1 and m2 are standing at the two ends A and B respectively, of a trolley of mass M as shown.
When the person standing at A jumps from the trolley towards left with urel with respect to the trolley, then
Two persons of mass m1 and m2 are standing at the two ends A and B respectively, of a trolley of mass M as shown.
When the person standing at A jumps from the trolley towards left with urel with respect to the trolley, then
physics-General
physics-
A small ball B of mass m is suspended with light inelastic string of length L from a block A of same mass m which can move on smooth horizontal surface as shown in the figure. The ball is displaced by angle from equilibrium position & then released.
The displacement of centre of mass of A + B system till the string becomes vertical is
A small ball B of mass m is suspended with light inelastic string of length L from a block A of same mass m which can move on smooth horizontal surface as shown in the figure. The ball is displaced by angle from equilibrium position & then released.
The displacement of centre of mass of A + B system till the string becomes vertical is
physics-General
physics-
A small ball B of mass m is suspended with light inelastic string of length L from a block A of same mass m which can move on smooth horizontal surface as shown in the figure. The ball is displaced by angle from equilibrium position & then released.
Maximum velocity of block during subsequent motion of the system after release of ball is
A small ball B of mass m is suspended with light inelastic string of length L from a block A of same mass m which can move on smooth horizontal surface as shown in the figure. The ball is displaced by angle from equilibrium position & then released.
Maximum velocity of block during subsequent motion of the system after release of ball is
physics-General
physics-
A small ball B of mass m is suspended with light inelastic string of length L from a block A of same mass m which can move on smooth horizontal surface as shown in the figure. The ball is displaced by angle from equilibrium position & then released.
Tension in string when it is vertical, is
A small ball B of mass m is suspended with light inelastic string of length L from a block A of same mass m which can move on smooth horizontal surface as shown in the figure. The ball is displaced by angle from equilibrium position & then released.
Tension in string when it is vertical, is
physics-General
physics-
A small ball B of mass m is suspended with light inelastic string of length L from a block A of same mass m which can move on smooth horizontal surface as shown in the figure. The ball is displaced by angle from equilibrium position & then released.
The displacement of block when ball reaches the equilibrium position is
A small ball B of mass m is suspended with light inelastic string of length L from a block A of same mass m which can move on smooth horizontal surface as shown in the figure. The ball is displaced by angle from equilibrium position & then released.
The displacement of block when ball reaches the equilibrium position is
physics-General
physics-
A block of mass m starts from rest and slides down a frictionless semi–circular track from a height h as shown. When it reaches the lowest point of the track, it collides with a stationary piece of putty also having mass m. If the block and the putty stick together and continue to slide, the maximum height that the block-putty system could reach is:
A block of mass m starts from rest and slides down a frictionless semi–circular track from a height h as shown. When it reaches the lowest point of the track, it collides with a stationary piece of putty also having mass m. If the block and the putty stick together and continue to slide, the maximum height that the block-putty system could reach is:
physics-General