Physics-
General
Easy

Question

An ac generator G with an adjustable frequency of oscillation is used in the circuit, as shown.

To increase resonant frequency of the circuit, some of the changes in the circuit are carried out. Which change(s) would certainly result in the increase in resonant frequency ?

  1. R is increased.    
  2. L subscript 1 end subscript is increased and C subscript 1 end subscript is decreased.    
  3. L subscript 2 end subscript is decreased and C subscript 2 end subscript is increased.    
  4. C subscript 3 end subscript is removed from the circuit.    

The correct answer is: C subscript 3 end subscript is removed from the circuit.

Related Questions to study

General
physics-

An ac generator G with an adjustable frequency of oscillation is used in the circuit, as shown.

Current drawn from the ac source will be maximum if its angular frequency is –

An ac generator G with an adjustable frequency of oscillation is used in the circuit, as shown.

Current drawn from the ac source will be maximum if its angular frequency is –

physics-General
General
physics-

Statement-1 : In a series R,L,C circuit if V subscript R end subscript, V subscript L end subscript , and V subscript C end subscript denote rms voltage across R, L and C repectively and V subscript S end subscript is the rms voltage across the source, then V subscript S end subscript equals V subscript R end subscript plus V subscript L end subscript plus V subscript C end subscript.

Statement-2 : In AC circuits, kirch off voltage law is correct at every instant of time.

Statement-1 : In a series R,L,C circuit if V subscript R end subscript, V subscript L end subscript , and V subscript C end subscript denote rms voltage across R, L and C repectively and V subscript S end subscript is the rms voltage across the source, then V subscript S end subscript equals V subscript R end subscript plus V subscript L end subscript plus V subscript C end subscript.

Statement-2 : In AC circuits, kirch off voltage law is correct at every instant of time.

physics-General
General
physics-

In the AC circuit shown below, the supply voltage has constant rms value V but variable frequency f. At resonance, the circuit :

In the AC circuit shown below, the supply voltage has constant rms value V but variable frequency f. At resonance, the circuit :

physics-General
parallel
General
physics-

In the circuit shown in figure, if both the bulbs B subscript 1 end subscript and B subscript 2 end subscript are identical :

In the circuit shown in figure, if both the bulbs B subscript 1 end subscript and B subscript 2 end subscript are identical :

physics-General
General
physics-

A resistor R, an inductor L, a capacitor C and voltmeters V subscript 1 end subscript, V subscript 2 end subscript and V subscript 3 end subscript are connected to an oscillator in the circuit as shown in the adjoining diagram. When the frequency of the oscillator is increased, up to resonance frequency, the voltmeter reading (at resonance frequency) is zero in the case of :

A resistor R, an inductor L, a capacitor C and voltmeters V subscript 1 end subscript, V subscript 2 end subscript and V subscript 3 end subscript are connected to an oscillator in the circuit as shown in the adjoining diagram. When the frequency of the oscillator is increased, up to resonance frequency, the voltmeter reading (at resonance frequency) is zero in the case of :

physics-General
General
physics-

In the series LCR circuit as shown in figure, the voltmeter and ammeter readings are :

In the series LCR circuit as shown in figure, the voltmeter and ammeter readings are :

physics-General
parallel
General
physics-

A time varying voltage V = 2t volt is applied across an ideal inductor of inductance L = 2H as shown in figure. Then select incorrect statement

A time varying voltage V = 2t volt is applied across an ideal inductor of inductance L = 2H as shown in figure. Then select incorrect statement

physics-General
General
physics-

A symmetrical converging convex lens of focal length 10 cm & diverging concave symmetrical lens of focal length - 20 cm are cut from the middle and perpendicularly and symmetrically to their principal axis. The parts thus obtained are arranged as shown in the figure. The focal length of this arrangement will be:

A symmetrical converging convex lens of focal length 10 cm & diverging concave symmetrical lens of focal length - 20 cm are cut from the middle and perpendicularly and symmetrically to their principal axis. The parts thus obtained are arranged as shown in the figure. The focal length of this arrangement will be:

physics-General
General
physics-

In the given figure an object ' O ' is kept in air in front of a thin plano convex lens of radius of curvature 10 cm. It's refractive index is 3/ 2 and the medium towards right of plane surface is water of refractive index 4/3. What should be the distance ' x ' of the object so that the rays become parallel finally

In the given figure an object ' O ' is kept in air in front of a thin plano convex lens of radius of curvature 10 cm. It's refractive index is 3/ 2 and the medium towards right of plane surface is water of refractive index 4/3. What should be the distance ' x ' of the object so that the rays become parallel finally

physics-General
parallel
General
physics-

In the figure shown, the image of a real object is formed at point I. AB is the principal axis of the mirror. The mirror must be:

In the figure shown, the image of a real object is formed at point I. AB is the principal axis of the mirror. The mirror must be:

physics-General
General
physics-

In the given figure a parallel beam of light is incident on the upper part of a prism of angle 1.8 to the power of ring operator end exponent and R.I. 3/2. The light coming out of the prism falls on a concave mirror of radius of curvature 20 cm. The distance of the point (where the rays are focused after reflection from the mirror) from the principal axis is: [use pi = 3.14]

In the given figure a parallel beam of light is incident on the upper part of a prism of angle 1.8 to the power of ring operator end exponent and R.I. 3/2. The light coming out of the prism falls on a concave mirror of radius of curvature 20 cm. The distance of the point (where the rays are focused after reflection from the mirror) from the principal axis is: [use pi = 3.14]

physics-General
General
physics-

In the shown figure M subscript 1 end subscript and M subscript 2 end subscript are two concave mirrors of the same focal length 10 cm. AB and CD are their principal axes respectively. A point object O is kept on the line AB at a distance 15 cm from M subscript 1 end subscript . The distance between the mirrors is 20 cm. Considering two successive reflections first on M1 and then on M subscript 2 end subscript . The distance of final image from the line AB is

In the shown figure M subscript 1 end subscript and M subscript 2 end subscript are two concave mirrors of the same focal length 10 cm. AB and CD are their principal axes respectively. A point object O is kept on the line AB at a distance 15 cm from M subscript 1 end subscript . The distance between the mirrors is 20 cm. Considering two successive reflections first on M1 and then on M subscript 2 end subscript . The distance of final image from the line AB is

physics-General
parallel
General
physics-

In the figure shown a point object O is placed in air. A spherical boundary of radius of curvature 1.0 m separates two media. AB is principal axis. The refractive index above AB is 1.6 and below AB is 2.0. The separation between the images formed due to refraction at spherical surface is

In the figure shown a point object O is placed in air. A spherical boundary of radius of curvature 1.0 m separates two media. AB is principal axis. The refractive index above AB is 1.6 and below AB is 2.0. The separation between the images formed due to refraction at spherical surface is

physics-General
General
physics-

In the figure shown a thin parallel beam of light is incident on a plane mirror m subscript 1 end subscript at small angle blank to the power of ´ end exponent theta to the power of ´ end exponent. m subscript 2 end subscript is a concave mirror of focal length ‘f’. After three successive reflections of this beam the x and y coordinates of the image is

In the figure shown a thin parallel beam of light is incident on a plane mirror m subscript 1 end subscript at small angle blank to the power of ´ end exponent theta to the power of ´ end exponent. m subscript 2 end subscript is a concave mirror of focal length ‘f’. After three successive reflections of this beam the x and y coordinates of the image is

physics-General
General
physics-

A light ray I is incident on a plane mirror M. The mirror is rotated in the direction as shown in the figure by an arrow at frequency 9 divided by pi rps. The light reflected by the mirror is received on the wall W at a distance 10 m from the axis of rotation. When the angle of incidence becomes 37 to the power of ring operator end exponent the speed of the spot (a point) on the wall is

A light ray I is incident on a plane mirror M. The mirror is rotated in the direction as shown in the figure by an arrow at frequency 9 divided by pi rps. The light reflected by the mirror is received on the wall W at a distance 10 m from the axis of rotation. When the angle of incidence becomes 37 to the power of ring operator end exponent the speed of the spot (a point) on the wall is

physics-General
parallel

card img

With Turito Academy.

card img

With Turito Foundation.

card img

Get an Expert Advice From Turito.

Turito Academy

card img

With Turito Academy.

Test Prep

card img

With Turito Foundation.