Physics-
General
Easy
Question
One end of a light rope is tied directly to the ceiling. A man of mass M initially at rest on the ground starts climbing the rope hand over upto a height . From the time he starts at rest on the ground to the time he is hanging at rest at a height , how much work done on the man by the rope ?
- 0
- Mg
- –Mg
- It depends on how fast the man goes up
The correct answer is: Mg
Related Questions to study
physics-
A block of mass 1 kg is placed on a rough horizontal surface. A spring is attached to the block whose other end is joined to a rigid wall,as shown in the figure. A horizontal force is applied on the block so that it remains at rest while the spring is elongated by x. Let be the maximum and minimum values of force F for which the block remains in equilibrium. For a particular x, = 2 N. Also shown is the variation of , the elongation of the spring The value of , if x = 3 cm is :
A block of mass 1 kg is placed on a rough horizontal surface. A spring is attached to the block whose other end is joined to a rigid wall,as shown in the figure. A horizontal force is applied on the block so that it remains at rest while the spring is elongated by x. Let be the maximum and minimum values of force F for which the block remains in equilibrium. For a particular x, = 2 N. Also shown is the variation of , the elongation of the spring The value of , if x = 3 cm is :
physics-General
physics-
A block of mass 1 kg is placed on a rough horizontal surface. A spring is attached to the block whose other end is joined to a rigid wall,as shown in the figure. A horizontal force is applied on the block so that it remains at rest while the spring is elongated by x. Let be the maximum and minimum values of force F for which the block remains in equilibrium. For a particular x, = 2 N. Also shown is the variation of , the elongation of the spring The spring constant of the spring is:
A block of mass 1 kg is placed on a rough horizontal surface. A spring is attached to the block whose other end is joined to a rigid wall,as shown in the figure. A horizontal force is applied on the block so that it remains at rest while the spring is elongated by x. Let be the maximum and minimum values of force F for which the block remains in equilibrium. For a particular x, = 2 N. Also shown is the variation of , the elongation of the spring The spring constant of the spring is:
physics-General
physics-
A block of mass 1 kg is placed on a rough horizontal surface. A spring is attached to the block whose other end is joined to a rigid wall,as shown in the figure. A horizontal force is applied on the block so that it remains at rest while the spring is elongated by x be the maximum and minimum values of force F for which the block remains in equilibrium. For a particular x, . Also shown is the variation of Fmax+ Fmin versus x, the elongation of the spring The coefficient of friction between the block and the horizontal surface is :
A block of mass 1 kg is placed on a rough horizontal surface. A spring is attached to the block whose other end is joined to a rigid wall,as shown in the figure. A horizontal force is applied on the block so that it remains at rest while the spring is elongated by x be the maximum and minimum values of force F for which the block remains in equilibrium. For a particular x, . Also shown is the variation of Fmax+ Fmin versus x, the elongation of the spring The coefficient of friction between the block and the horizontal surface is :
physics-General
physics-
Two bodies A and B of masses 10 kg and 5 kg are placed very slightly separated as shown in figure. The coefficients of friction between the floor and the blocks are as . Block A is pushed by an external force F. The value of F can be changed. When the welding between block A and ground breaks, block A will start pressing block B and when welding of B also breaks, block B will start pressing the vertical wall If F = 50 N, the friction force acting between block B and ground will be :
Two bodies A and B of masses 10 kg and 5 kg are placed very slightly separated as shown in figure. The coefficients of friction between the floor and the blocks are as . Block A is pushed by an external force F. The value of F can be changed. When the welding between block A and ground breaks, block A will start pressing block B and when welding of B also breaks, block B will start pressing the vertical wall If F = 50 N, the friction force acting between block B and ground will be :
physics-General
physics-
Two bodies A and B of masses 10 kg and 5 kg are placed very slightly separated as shown in figure. The coefficients of friction between the floor and the blocks are as . Block A is pushed by an external force F. The value of F can be changed. When the welding between block A and ground breaks, block A will start pressing block B and when welding of B also breaks, block B will start pressing the vertical wall If , with how much force does block A presses the block B
Two bodies A and B of masses 10 kg and 5 kg are placed very slightly separated as shown in figure. The coefficients of friction between the floor and the blocks are as . Block A is pushed by an external force F. The value of F can be changed. When the welding between block A and ground breaks, block A will start pressing block B and when welding of B also breaks, block B will start pressing the vertical wall If , with how much force does block A presses the block B
physics-General
physics-
STATEMENT-1 : A fixed wedge of inclination lies on horizontal table. x and y axes are drawn on inclined surface as shown, such that x axis is horizontal and y-axis is along line of greatest slope. A block of mass m is placed (at rest) on inclined surface at origin. The coefficient of friction between block and wedge is , such that . Then a force applied to block parallel to inclined surface and along x-axis can move the block along x-axis
STATEMENT-2 : To move the block placed at rest on rough inclined surface along the inclined surface, the net force on block (except frictional force) should be greater than . (N = normal reaction on block).
STATEMENT-1 : A fixed wedge of inclination lies on horizontal table. x and y axes are drawn on inclined surface as shown, such that x axis is horizontal and y-axis is along line of greatest slope. A block of mass m is placed (at rest) on inclined surface at origin. The coefficient of friction between block and wedge is , such that . Then a force applied to block parallel to inclined surface and along x-axis can move the block along x-axis
STATEMENT-2 : To move the block placed at rest on rough inclined surface along the inclined surface, the net force on block (except frictional force) should be greater than . (N = normal reaction on block).
physics-General
chemistry-
Borax is converted into B by steps Borax I and II reagents are
Borax is converted into B by steps Borax I and II reagents are
chemistry-General
chemistry-
The following diagram shows the arrangement of lattice points with and . Choose the correct options
The following diagram shows the arrangement of lattice points with and . Choose the correct options
chemistry-General
chemistry-
In the cubic lattice given below, the three distances between the atoms , and are, respectively,
In the cubic lattice given below, the three distances between the atoms , and are, respectively,
chemistry-General
chemistry-
In an f cc unit cell, atoms are numbered as shown below. The atoms not touching each other are (Atom numbered 3 is face center of front face)
In an f cc unit cell, atoms are numbered as shown below. The atoms not touching each other are (Atom numbered 3 is face center of front face)
chemistry-General
chemistry-
In body-centered cubic lattice given below, the three distances AB, AC, and AA'' are
In body-centered cubic lattice given below, the three distances AB, AC, and AA'' are
chemistry-General
chemistry-
The packing efficiency of the two-dimensional square unit cell shown below is
The packing efficiency of the two-dimensional square unit cell shown below is
chemistry-General
physics-
A particle A of mass kg is moving in the positive direction of x. Its initial position is x = 0 & initial velocity is 1 . The velocity at x = 10 is in (use the graph given)
A particle A of mass kg is moving in the positive direction of x. Its initial position is x = 0 & initial velocity is 1 . The velocity at x = 10 is in (use the graph given)
physics-General
physics-
STATEMENT-1 : A block of mass m is placed at rest on rough horizontal surface. The coefficient of friction between the block and horizontal surface is . The minimum force F applied at angle (as shown in figure) to pull the block horizontally is not equal to mmg. (Take )
STATEMENT-2 : For a block of mass m placed on rough horizontal surface, the minimum horizontal force required to pull the block is . The minimum force F applied at angle (as shown in figure) to pull the block horizontally may be less than mmg. (Where is co-efficient of friction)
STATEMENT-1 : A block of mass m is placed at rest on rough horizontal surface. The coefficient of friction between the block and horizontal surface is . The minimum force F applied at angle (as shown in figure) to pull the block horizontally is not equal to mmg. (Take )
STATEMENT-2 : For a block of mass m placed on rough horizontal surface, the minimum horizontal force required to pull the block is . The minimum force F applied at angle (as shown in figure) to pull the block horizontally may be less than mmg. (Where is co-efficient of friction)
physics-General
physics-
In the following figure, find the direction of friction on the blocks and ground respectively
In the following figure, find the direction of friction on the blocks and ground respectively
physics-General