Physics-
General
Easy

Question

The count rate of 10 g of radioactive material was measured at different times and this has been shown in the figure. The half life of material and the total counts (approximately) in the first half life period, respectively are

  1. 4 h comma 9000    
  2. 3 h comma 14000    
  3. 3 h comma 235    
  4. 3 h comma 50    

The correct answer is: 3 h comma 14000


    Read time for 50 count rate, it gives half life period of 3 blank h r s, one small square gives 600 counts left parenthesis 10 cross times 60 right parenthesis. The number of small squares between graph and time axis are approx 24
    Hence count rate equals 24 cross times 600 equals 14400

    Related Questions to study

    General
    physics-

    Drawings I and II show two samples of electric field lines

    Drawings I and II show two samples of electric field lines

    physics-General
    General
    physics-

    Figure shows lines of force for a system of two point charges. The possible choice for the charges is

    Figure shows lines of force for a system of two point charges. The possible choice for the charges is

    physics-General
    General
    physics-

    Figure shows the electric lines of force emerging from a charged body. If the electric field at ‘A’ and ‘B’ are EA and EB respectively and if the displacement between ‘A’ and ‘B’ is ‘r’ then

    Figure shows the electric lines of force emerging from a charged body. If the electric field at ‘A’ and ‘B’ are EA and EB respectively and if the displacement between ‘A’ and ‘B’ is ‘r’ then

    physics-General
    parallel
    General
    biology

    Given below is one of the types of ecological pyramids. This type represents –

    Given below is one of the types of ecological pyramids. This type represents –

    biologyGeneral
    General
    physics-

    Four charges are arranged at the corners of a square ABCD as shown in the figure. The force on the positive charge kept at the centre ‘O’ is

    Four charges are arranged at the corners of a square ABCD as shown in the figure. The force on the positive charge kept at the centre ‘O’ is

    physics-General
    General
    physics-

    A detector is moving in a circular path of radius r in anticlock wise direction with a constant angular velocity omega as shown in the figure At time t=0, it starts from the location shown at A, assuming source at rest The time interval between minimum and maximum frequency as received by the detector

    A detector is moving in a circular path of radius r in anticlock wise direction with a constant angular velocity omega as shown in the figure At time t=0, it starts from the location shown at A, assuming source at rest The time interval between minimum and maximum frequency as received by the detector

    physics-General
    parallel
    General
    physics-

    A detector is moving in a circular path of radius r in anticlock wise direction with a constant angular velocity omega as shown in the figure At time t=0, it starts from the location shown at A, assuming source at rest The time at which the detector will hear the maximum frequency for the 1st time

    A detector is moving in a circular path of radius r in anticlock wise direction with a constant angular velocity omega as shown in the figure At time t=0, it starts from the location shown at A, assuming source at rest The time at which the detector will hear the maximum frequency for the 1st time

    physics-General
    General
    physics-

    A detector is moving in a circular path of radius r in anticlock wise direction with a constant angular velocity omega as shown in the figure At time t=0, it starts from the location shown at A, assuming source at rest The frequency as received by the detector when it rotates by an angle fraction numerator pi over denominator 2 end fraction

    A detector is moving in a circular path of radius r in anticlock wise direction with a constant angular velocity omega as shown in the figure At time t=0, it starts from the location shown at A, assuming source at rest The frequency as received by the detector when it rotates by an angle fraction numerator pi over denominator 2 end fraction

    physics-General
    General
    physics-

    Two speakers S subscript 1 end subscript & S subscript 2 end subscript driven by the same amplifiers are placed at y=1m and y=-1m The speakers vibrate in phase at 600 Hz A man stands at a point on x-axis at a very large distance form the origin and starts moving parallel to y-axis The speed of sound in air is 330 m/s If he continous to walk along the same line how many more maxima can he hear

    Two speakers S subscript 1 end subscript & S subscript 2 end subscript driven by the same amplifiers are placed at y=1m and y=-1m The speakers vibrate in phase at 600 Hz A man stands at a point on x-axis at a very large distance form the origin and starts moving parallel to y-axis The speed of sound in air is 330 m/s If he continous to walk along the same line how many more maxima can he hear

    physics-General
    parallel
    General
    physics-

    Two speakers S subscript 1 end subscript & S subscript 2 end subscript driven by the same amplifiers are placed at y=1m and y=-1m The speakers vibrate in phase at 600 Hz A man stands at a point on x-axis at a very large distance form the origin and starts moving parallel to y-axis The speed of sound in air is 330 m/s The angle θ at which he will hear maximum intensity for first time?

    Two speakers S subscript 1 end subscript & S subscript 2 end subscript driven by the same amplifiers are placed at y=1m and y=-1m The speakers vibrate in phase at 600 Hz A man stands at a point on x-axis at a very large distance form the origin and starts moving parallel to y-axis The speed of sound in air is 330 m/s The angle θ at which he will hear maximum intensity for first time?

    physics-General
    General
    physics-

    Two speakers S subscript 1 end subscript & S subscript 2 end subscript driven by the same amplifiers are placed at y=1m and y=-1m The speakers vibrate in phase at 600 Hz A man stands at a point on x-axis at a very large distance form the origin and starts moving parallel to y-axis The speed of sound in air is 330 m/s The angle θ at which intensity of sound drop to a minimum for the first time

    Two speakers S subscript 1 end subscript & S subscript 2 end subscript driven by the same amplifiers are placed at y=1m and y=-1m The speakers vibrate in phase at 600 Hz A man stands at a point on x-axis at a very large distance form the origin and starts moving parallel to y-axis The speed of sound in air is 330 m/s The angle θ at which intensity of sound drop to a minimum for the first time

    physics-General
    General
    physics-

    When a composite wire is made by joining two wires as shown in figure and possible frequencies of this wire is asked (both ends fixed) then the lowest frequency is that at which individual lowest frequencies of the two wires are equal text In the figure given :  end text l subscript 1 end subscript equals l subscript 2 end subscript equals l. mu subscript 1 end subscript equals fraction numerator mu subscript 2 end subscript over denominator 9 end fraction equals mu text  . end textThe lowest frequency such that the junction is an antinode is

    When a composite wire is made by joining two wires as shown in figure and possible frequencies of this wire is asked (both ends fixed) then the lowest frequency is that at which individual lowest frequencies of the two wires are equal text In the figure given :  end text l subscript 1 end subscript equals l subscript 2 end subscript equals l. mu subscript 1 end subscript equals fraction numerator mu subscript 2 end subscript over denominator 9 end fraction equals mu text  . end textThe lowest frequency such that the junction is an antinode is

    physics-General
    parallel
    General
    physics-

    When a composite wire is made by joining two wires as shown in figure and possible frequencies of this wire is asked (both ends fixed) then the lowest frequency is that at which individual lowest frequencies of the two wires are equal text In the figure given :  end text l subscript 1 end subscript equals l subscript 2 end subscript equals l. mu subscript 1 end subscript equals fraction numerator mu subscript 2 end subscript over denominator 9 end fraction equals mu text  . end textThe lowest frequency such that the junction is a node is

    When a composite wire is made by joining two wires as shown in figure and possible frequencies of this wire is asked (both ends fixed) then the lowest frequency is that at which individual lowest frequencies of the two wires are equal text In the figure given :  end text l subscript 1 end subscript equals l subscript 2 end subscript equals l. mu subscript 1 end subscript equals fraction numerator mu subscript 2 end subscript over denominator 9 end fraction equals mu text  . end textThe lowest frequency such that the junction is a node is

    physics-General
    General
    chemistry-

    The mass of neutron is of the order of:

    The mass of neutron is of the order of:

    chemistry-General
    General
    chemistry-

    The energy of the electron in the first orbit of He to the power of plus is negative 871.6 cross times 10 to the power of negative 20 end exponent straight J The energy of the election in the first orbit of hydrogen would be:

    The energy of the electron in the first orbit of He to the power of plus is negative 871.6 cross times 10 to the power of negative 20 end exponent straight J The energy of the election in the first orbit of hydrogen would be:

    chemistry-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.