Physics-
General
Easy

Question

Two blocks are connected by a spring. The combination is suspended, at rest, from a string attached to the ceiling, as shown in the figure. The string breaks suddenly. Immediately after the string breaks, what is the initial downward acceleration of the upper block of mass 2 m ?

  1. 0    
  2. g    
  3. 3 g/2    
  4. 2 g    

The correct answer is: 3 g/2

Related Questions to study

General
physics-

Two blocks A and B of masses m&2m respectively are held at rest such that the spring is in natural length. Find out the accelerations of both the blocks jus t after release.

Two blocks A and B of masses m&2m respectively are held at rest such that the spring is in natural length. Find out the accelerations of both the blocks jus t after release.

physics-General
General
physics-

In the arrangements shown, the pulleys, strings and springs are weightless and the systems can move freely without friction. The extension of spring in figure 1 is x subscript 1 end subscript and that in figure 2 is x subscript 2 end subscript. Then

In the arrangements shown, the pulleys, strings and springs are weightless and the systems can move freely without friction. The extension of spring in figure 1 is x subscript 1 end subscript and that in figure 2 is x subscript 2 end subscript. Then

physics-General
General
physics-

A particle of mass m is acted on by two forces of equal magnitude F maintaining their orientation relative to the velocity v as shown in the figures(1), (2) and (3). The momentum of the particle
1) 
2) 
3) 

A particle of mass m is acted on by two forces of equal magnitude F maintaining their orientation relative to the velocity v as shown in the figures(1), (2) and (3). The momentum of the particle
1) 
2) 
3) 

physics-General
parallel
General
physics-

In the given figure, the position time graph of a particle of mass 0.1 kg is shown. The impulse at t= 2sec is

In the given figure, the position time graph of a particle of mass 0.1 kg is shown. The impulse at t= 2sec is

physics-General
General
physics-

A unidirectional force F varying with time t as shown in the Fig acts on a body initially at rest for a short duration 2T. Then the velocity acquired by the body is

A unidirectional force F varying with time t as shown in the Fig acts on a body initially at rest for a short duration 2T. Then the velocity acquired by the body is

physics-General
General
physics-

In the system shown in Fig, m subscript A end subscript equals 4 m comma m subscript B end subscript equals 3 m, and m subscript C end subscript equals 8. Friction is absent everywhere, and the string is inextensible and light. If the system is released from rest, then find the following.

The acceleration of Block A in horizontal direction is

In the system shown in Fig, m subscript A end subscript equals 4 m comma m subscript B end subscript equals 3 m, and m subscript C end subscript equals 8. Friction is absent everywhere, and the string is inextensible and light. If the system is released from rest, then find the following.

The acceleration of Block A in horizontal direction is

physics-General
parallel
General
physics-

In the system shown in Fig, m subscript A end subscript equals 4 m comma m subscript B end subscript equals 3 m, and m subscript C end subscript equals 8. Friction is absent everywhere, and the string is inextensible and light. If the system is released from rest, then find the following.

The acceleration of Block B is

In the system shown in Fig, m subscript A end subscript equals 4 m comma m subscript B end subscript equals 3 m, and m subscript C end subscript equals 8. Friction is absent everywhere, and the string is inextensible and light. If the system is released from rest, then find the following.

The acceleration of Block B is

physics-General
General
physics-

In the system shown in Fig, m subscript A end subscript equals 4 m comma m subscript B end subscript equals 3 m, and m subscript C end subscript equals 8. Friction is absent everywhere, and the string is inextensible and light. If the system is released from rest, then find the following.

The acceleration of Block C is

In the system shown in Fig, m subscript A end subscript equals 4 m comma m subscript B end subscript equals 3 m, and m subscript C end subscript equals 8. Friction is absent everywhere, and the string is inextensible and light. If the system is released from rest, then find the following.

The acceleration of Block C is

physics-General
General
physics-

In the system shown in Fig, m subscript A end subscript equals 4 m comma m subscript B end subscript equals 3 m, and m subscript C end subscript equals 8. Friction is absent everywhere, and the string is inextensible and light. If the system is released from rest, then find the following.

The tension in the string is

In the system shown in Fig, m subscript A end subscript equals 4 m comma m subscript B end subscript equals 3 m, and m subscript C end subscript equals 8. Friction is absent everywhere, and the string is inextensible and light. If the system is released from rest, then find the following.

The tension in the string is

physics-General
parallel
General
physics-

A block of mass ' m ' is placed on wedge of mass ' M '. If all the surfaces are smooth

Acceleration of masses ' m ' along x and y axes are a subscript x end subscript and a subscript y end subscript respectively. Accelaration of wedge is 'A'.

A block of mass ' m ' is placed on wedge of mass ' M '. If all the surfaces are smooth

Acceleration of masses ' m ' along x and y axes are a subscript x end subscript and a subscript y end subscript respectively. Accelaration of wedge is 'A'.

physics-General
General
physics-

Find the minimum acceleration of the wedge so that block under free fall

Find the minimum acceleration of the wedge so that block under free fall

physics-General
General
physics-

In the arrangement shown in figure wedge of mass M moves towards left with an acceleration a. All surfaces are smooth. The acceleration of mass m relative to wedge is :

In the arrangement shown in figure wedge of mass M moves towards left with an acceleration a. All surfaces are smooth. The acceleration of mass m relative to wedge is :

physics-General
parallel
General
physics-

Two blocks A and B of equal mass m are connected through a massless string and arranged as shown in figure. Friction is absent everywhere. When the system is released from rest:

Two blocks A and B of equal mass m are connected through a massless string and arranged as shown in figure. Friction is absent everywhere. When the system is released from rest:

physics-General
General
physics-

In fig. all the pulleys and strings are massless and all the surfaces are frictionless. Small block of mass m is placed on fixed wedge. (take g equals 10 blank m s to the power of negative 2 end exponent ) The acceleration of pully p subscript 4 end subscript is

In fig. all the pulleys and strings are massless and all the surfaces are frictionless. Small block of mass m is placed on fixed wedge. (take g equals 10 blank m s to the power of negative 2 end exponent ) The acceleration of pully p subscript 4 end subscript is

physics-General
General
physics-

A slider block of mass 10 kg with a hanging rope is moving on an inclined surface at an angle of 30° with horizontal. A monkey of 10 kg is climbing on the rope with an acceleration of 1 blank m divided by s to the power of 2 end exponent. The slider block also slides with acceleration of 0.5 blank m divided by s to the power of 2 end exponent. The surface are smooth. How much force should t he monkey apply to the rope to l i m b invisible function application open parentheses g equals 10 blank m divided by s to the power of 2 end exponent close parentheses

A slider block of mass 10 kg with a hanging rope is moving on an inclined surface at an angle of 30° with horizontal. A monkey of 10 kg is climbing on the rope with an acceleration of 1 blank m divided by s to the power of 2 end exponent. The slider block also slides with acceleration of 0.5 blank m divided by s to the power of 2 end exponent. The surface are smooth. How much force should t he monkey apply to the rope to l i m b invisible function application open parentheses g equals 10 blank m divided by s to the power of 2 end exponent close parentheses

physics-General
parallel

card img

With Turito Academy.

card img

With Turito Foundation.

card img

Get an Expert Advice From Turito.

Turito Academy

card img

With Turito Academy.

Test Prep

card img

With Turito Foundation.