Physics-
General
Easy

Question

System is shown in the figure. Assume that cylinder remains in contact with the two wedges. The velocity of cylinder is –

  1. square root of 19 minus 4 square root of 3 end root u over 2 m divided by s
  2. fraction numerator square root of 13 straight u over denominator 2 end fraction straight m divided by straight s
  3. square root of 3 um divided by straight s
  4. square root of 7 u m divided by s

The correct answer is: square root of 7 u m divided by s

Related Questions to study

General
maths-

Let f left parenthesis x right parenthesis equals x c o s to the power of negative 1 end exponent invisible function application left parenthesis negative s i n invisible function application vertical line x vertical line right parenthesis comma x element of open square brackets negative fraction numerator pi over denominator 2 end fraction comma fraction numerator pi over denominator 2 end fraction close square brackets, then which of the following is true?

Let f left parenthesis x right parenthesis equals x c o s to the power of negative 1 end exponent invisible function application left parenthesis negative s i n invisible function application vertical line x vertical line right parenthesis comma x element of open square brackets negative fraction numerator pi over denominator 2 end fraction comma fraction numerator pi over denominator 2 end fraction close square brackets, then which of the following is true?

maths-General
General
maths-

For all twice differentiable functios f colon R rightwards arrow R, with f left parenthesis 0 right parenthesis equals f left parenthesis 1 right parenthesis equals f to the power of ´ end exponent left parenthesis 0 right parenthesis equals 0

For all twice differentiable functios f colon R rightwards arrow R, with f left parenthesis 0 right parenthesis equals f left parenthesis 1 right parenthesis equals f to the power of ´ end exponent left parenthesis 0 right parenthesis equals 0

maths-General
General
physics-

The pulleys and strings shown in the figure are smooth and of negligible mass. For the system to remain in equilibrium, the angle theta should be :–

The pulleys and strings shown in the figure are smooth and of negligible mass. For the system to remain in equilibrium, the angle theta should be :–

physics-General
parallel
General
physics-

A string of negligible mass going over a clamped pulley of mass m supports a block of mass M as shown in the figure. The force on the pulley by the clamp is given by :–

A string of negligible mass going over a clamped pulley of mass m supports a block of mass M as shown in the figure. The force on the pulley by the clamp is given by :–

physics-General
General
maths-

Let f be a twice differentiable function on left parenthesis 1 , 6 right parenthesis. If f left parenthesis 2 right parenthesis equals 8, f to the power of ´ end exponent left parenthesis 2 right parenthesis equals 5 comma f to the power of ´ end exponent left parenthesis x right parenthesis greater or equal than 1 and f to the power of ´ left parenthesis x right parenthesis greater or equal than 4, for all x element of left parenthesis 1 , 6 right parenthesis, then colon

Let f be a twice differentiable function on left parenthesis 1 , 6 right parenthesis. If f left parenthesis 2 right parenthesis equals 8, f to the power of ´ end exponent left parenthesis 2 right parenthesis equals 5 comma f to the power of ´ end exponent left parenthesis x right parenthesis greater or equal than 1 and f to the power of ´ left parenthesis x right parenthesis greater or equal than 4, for all x element of left parenthesis 1 , 6 right parenthesis, then colon

maths-General
General
physics-

A insect crawls up a hemispherical surface very slowly (see the figure). The coefficient of friction between the surface and the insect is 1 third  . If the line joining the centre of the hemispherical surface to the insect makes an angle a with the vertical, the maximum possible value of  alpha is given :

A insect crawls up a hemispherical surface very slowly (see the figure). The coefficient of friction between the surface and the insect is 1 third  . If the line joining the centre of the hemispherical surface to the insect makes an angle a with the vertical, the maximum possible value of  alpha is given :

physics-General
parallel
General
physics-

A long horizontal rod has a bead which can slide along its length and is initially placed at a distance L from one end A of the rod. The rod is set in angular motion about A with a constant angular acceleration, . If the coefficient of friction between the rod and bead is , and gravity is neglected, then the time after which the bead starts slipping is

A long horizontal rod has a bead which can slide along its length and is initially placed at a distance L from one end A of the rod. The rod is set in angular motion about A with a constant angular acceleration, . If the coefficient of friction between the rod and bead is , and gravity is neglected, then the time after which the bead starts slipping is

physics-General
General
physics-

A point particle of mass m, moves along the uniformly rough track PQR as shown in the figure. The coefficient of friction, between the particle and the rough track equals mu The particle is released, from rest, from the point P and it comes to rest at a point R. The energies, lost by the ball, over the parts, PQ and QR, of the track, are equal to each other, and no energy is lost when particle changes direction from PQ to QR. The values of the coefficient of friction mu and the distance x(=QR), are, respectively close to:

A point particle of mass m, moves along the uniformly rough track PQR as shown in the figure. The coefficient of friction, between the particle and the rough track equals mu The particle is released, from rest, from the point P and it comes to rest at a point R. The energies, lost by the ball, over the parts, PQ and QR, of the track, are equal to each other, and no energy is lost when particle changes direction from PQ to QR. The values of the coefficient of friction mu and the distance x(=QR), are, respectively close to:

physics-General
General
physics-

An observer can see through a pin–hole the top end of a thin rod of height h, placed as shown in the figure. The beaker height is 3h and its radius h. When the beaker is filled with a liquid up to a height 2h, he can see the lower end of the rod. Then the refractive index of the liquid is

An observer can see through a pin–hole the top end of a thin rod of height h, placed as shown in the figure. The beaker height is 3h and its radius h. When the beaker is filled with a liquid up to a height 2h, he can see the lower end of the rod. Then the refractive index of the liquid is

physics-General
parallel
General
physics-

A diverging beam of light from a point source S having divergence angle a, falls symmetrically on a glass slab as shown. The angles of incidence of the two extreme rays are equal. If the thickness of the glass slab is t and the refractive index n, then the divergence angle of the emergent beam is

A diverging beam of light from a point source S having divergence angle a, falls symmetrically on a glass slab as shown. The angles of incidence of the two extreme rays are equal. If the thickness of the glass slab is t and the refractive index n, then the divergence angle of the emergent beam is

physics-General
General
physics-

A rectangular glass slab ABCD, of refractive index n1, is immersed in water of refractive index n subscript 2 end subscript open parentheses n subscript 1 end subscript greater than n subscript 2 end subscript close parentheses A ray of light in incident at the surface AB of the slab as shown. The maximum value of the angle of incidence amax, such that the ray comes out only from the other surface CD is given by

A rectangular glass slab ABCD, of refractive index n1, is immersed in water of refractive index n subscript 2 end subscript open parentheses n subscript 1 end subscript greater than n subscript 2 end subscript close parentheses A ray of light in incident at the surface AB of the slab as shown. The maximum value of the angle of incidence amax, such that the ray comes out only from the other surface CD is given by

physics-General
General
physics-

A smooth block is released at rest on a  incline and then slides a distance d. The time taken to slide is n times as much to slide on rough incline than on a smooth incline. The coefficient of friction is-

A smooth block is released at rest on a  incline and then slides a distance d. The time taken to slide is n times as much to slide on rough incline than on a smooth incline. The coefficient of friction is-

physics-General
parallel
General
physics-

A block is kept on a friction less inclined surface with angle of inclination . The incline is given an acceleration a to keep the block stationary. Then a is equal to-

A block is kept on a friction less inclined surface with angle of inclination . The incline is given an acceleration a to keep the block stationary. Then a is equal to-

physics-General
General
maths-

If the sides a, b, c of a triangle are in G.P. and largest angle exceeds the smallest by 6 0 to the power of 0 end exponent, then c o s blank B equals

If the sides a, b, c of a triangle are in G.P. and largest angle exceeds the smallest by 6 0 to the power of 0 end exponent, then c o s blank B equals

maths-General
General
physics-

Two plane mirrors. A and B are aligned parallel to each other, as shown in the figure. A light ray is incident at an angle of 30 degree at a point just inside one end of A. The plane of incidence coincides with the plane of the figure. The maximum number of times the ray undergoes reflections (including the first one) before it emerges out is

Two plane mirrors. A and B are aligned parallel to each other, as shown in the figure. A light ray is incident at an angle of 30 degree at a point just inside one end of A. The plane of incidence coincides with the plane of the figure. The maximum number of times the ray undergoes reflections (including the first one) before it emerges out is

physics-General
parallel

card img

With Turito Academy.

card img

With Turito Foundation.

card img

Get an Expert Advice From Turito.

Turito Academy

card img

With Turito Academy.

Test Prep

card img

With Turito Foundation.