Maths-
General
Easy
Question
The graph of h is the graph of g(x)= (x-2)2+6 translated 5 units left and 3 units down.
a. Describe the graph of h as a translation of the graph of f(x)= x2
b. Write the function h in vertex form.
Hint:
The vertex form of a quadratic function is
f(x) = a(x – h)2 + k
Where a, h, and k are constants. Here, h represents horizontal translation, a represents vertical translation and (h, k) is the vertex of the parabola. Also, a represents the Vertical stretch/shrink of the parabola and if a is negative, then the graph is reflected over the x-axis.
The correct answer is: a) Hence, h(x) is 3 units left and 3 units up of f(x) b) The vertex form of h(x) is (x+3)2+3.
Given g(x)= (x-2)2+6
To get h(x), first g(x) is translated 5 units left
So, h(x) = (x-2+5)2+6 = (x+3)2+6
Now, g(x) is translated 3 units down
So, h(x) = (x+3)2+6 -3 = (x+3)2+3
Given f(x) = x2 and h(x) = (x+3)2+3
Now, if f(x) is translated 3 units left and 3 units up, then the value of f(x) is
f(x) = (x+3)2+3 = h(x)
So, h(x) is 3 units left and 3 units up of f(x)
Final Answer:
a) Hence, h(x) is 3 units left and 3 units up of f(x)
b) The vertex form of h(x) is (x+3)2+3.
Related Questions to study
Maths-
In ∆ABC, ∠ABC = 90° AD is the median to BC and CE is the median to AB. If AC = 5 cm and AD = cm, find CE.
In ∆ABC, ∠ABC = 90° AD is the median to BC and CE is the median to AB. If AC = 5 cm and AD = cm, find CE.
Maths-General
Maths-
Find the vertex, axis of symmetry and sketch the graph of the function
f(x)= x2+2
Find the vertex, axis of symmetry and sketch the graph of the function
f(x)= x2+2
Maths-General
Maths-
Find the vertex, axis of symmetry and sketch the graph of the function f(x)= x2 -5
Find the vertex, axis of symmetry and sketch the graph of the function f(x)= x2 -5
Maths-General
Maths-
Find the vertex, axis of symmetry and sketch the graph of the function g(x)= x2 -1
Find the vertex, axis of symmetry and sketch the graph of the function g(x)= x2 -1
Maths-General
Maths-
Find the vertex, axis of symmetry and sketch the graph of the function h(x)= x2+0.5
Find the vertex, axis of symmetry and sketch the graph of the function h(x)= x2+0.5
Maths-General
Maths-
Find the vertex, axis of symmetry and sketch the graph of the function.
F(x) = -2(x + 1)2 + 5
Find the vertex, axis of symmetry and sketch the graph of the function.
F(x) = -2(x + 1)2 + 5
Maths-General
Maths-
Find the vertex, axis of symmetry and sketch the graph of the function f(x)= x2-2.25
Find the vertex, axis of symmetry and sketch the graph of the function f(x)= x2-2.25
Maths-General
Maths-
Find the vertex, axis of symmetry and sketch the graph of the function f(x)= x2+50
Find the vertex, axis of symmetry and sketch the graph of the function f(x)= x2+50
Maths-General
Maths-
Solve Graphically :
X+Y= -1
Y-2X=-4
Solve Graphically :
X+Y= -1
Y-2X=-4
Maths-General
Maths-
Find the vertex, axis of symmetry and sketch the graph of the function h(x)= x2+7
Find the vertex, axis of symmetry and sketch the graph of the function h(x)= x2+7
Maths-General
Maths-
The sides of a right-angled triangle are 2x – 1, 2x, 2x + 1. Find x.
The sides of a right-angled triangle are 2x – 1, 2x, 2x + 1. Find x.
Maths-General
Maths-
How does the graph of f(x) = -3(x - 5)2 + 7 compare to the graph of the parent function
How does the graph of f(x) = -3(x - 5)2 + 7 compare to the graph of the parent function
Maths-General
Maths-
Find the vertex, axis of symmetry and sketch the graph of the function g(x)= (x-1)2
Find the vertex, axis of symmetry and sketch the graph of the function g(x)= (x-1)2
Maths-General
Maths-
Find Graphically the vertices of the triangle whose sides have equations 2Y-X=8 , 5Y-X= 14 and Y-2X=1 respectively. Take 1 cm = 1 unit on both the axes.
Find Graphically the vertices of the triangle whose sides have equations 2Y-X=8 , 5Y-X= 14 and Y-2X=1 respectively. Take 1 cm = 1 unit on both the axes.
Maths-General
Maths-
Find the vertex, axis of symmetry and sketch the graph of the function g(x)= (x+2)2
Find the vertex, axis of symmetry and sketch the graph of the function g(x)= (x+2)2
Maths-General