Question
To solve a trigonometric inequation of the type sin x ≥ a where |a| ≤ 1, we take a hill of length 2 in the sine curve and write the solution within that hill. For the general solution, we add 2n. For instance, to solve , we take the hill over which solution is The general solution is , n is any integer. Again to solve an inequation of the type sin x ≤ a, where |a| ≤ 1, we take a hollow of length 2 in the sine curve. (since on a hill, sinx ≤ a is satisfied over two intervals). Similarly cos x ≥ a or cosx ≤a, |a| ≤ 1 are solved.
Solution to the inequation must be
- none of these
The correct answer is:
Related Questions to study
Which of the following compounds does not give halo form reaction?
Which of the following compounds does not give halo form reaction?
The oxidation number of carboxylic carbon atom in is:
The oxidation number of carboxylic carbon atom in is:
The oxidation number of carboxylic carbon atom in is:
The oxidation number of carboxylic carbon atom in is:
The product (A) is:
The product (A) is:
If then is always
If then is always
The compound (A) is:
The compound (A) is:
The oxidation number of C in is:
The oxidation number of C in is:
has
In this question, we have to find the number of solution. In each quadrant tan value is different. Make two different case, one is where tan is positive ,[ 0 , π/2 ] U [π , 3 π/2 ] . And second case , tan is negative at [π/2 , π] U [3 π/2 , 2 π ] .
has
In this question, we have to find the number of solution. In each quadrant tan value is different. Make two different case, one is where tan is positive ,[ 0 , π/2 ] U [π , 3 π/2 ] . And second case , tan is negative at [π/2 , π] U [3 π/2 , 2 π ] .
If then for all real values of q
If then for all real values of q
The products (A) , (B) and (C) are:
The products (A) , (B) and (C) are:
In the interval , the equation, has
In the interval , the equation, has
oxidised product of , in the above reaction cannot be
oxidised product of , in the above reaction cannot be
Let a, b, c, d R. Then the cubic equation of the type has either one root real or all three roots are real. But in case of trigonometric equations of the type can possess several solutions depending upon the domain of x. To solve an equation of the type a . The equation can be written as The solution is where =
On the domain [–, ] the equation possess
Let a, b, c, d R. Then the cubic equation of the type has either one root real or all three roots are real. But in case of trigonometric equations of the type can possess several solutions depending upon the domain of x. To solve an equation of the type a . The equation can be written as The solution is where =
On the domain [–, ] the equation possess