Mathematics
Grade-8
Easy

Question

In rotation, the point (x, y) after moving 270° clockwise will be

  1. (-y, x)
  2. (-x, -y)
  3. (x, -y)
  4. (-x, y)

hintHint:

Rotate the given point about 270 degrees clockwise to obtain the new coordinates.

The correct answer is: (-y, x)


    Given Data:
                          In rotation, the point (x, y) after moving 270° clockwise will be
    >>>since, it is clockwise rotation the angle of rotation alpha becomes negative.
    >>alpha= -270.
    >>>New coordinates of a point after rotation:
                                 = (x cosalpha - y sinalpha , y cosalpha + x sinalpha)
    = (x cos(-270) - y sin(-270) , y sin(-270) + x sin(-270))
    = (-y , x).
    ***Hence, the rotation of the point (x, y) through 270 degrees clockwise becomes (-y, x)


    * In Mathematics, rotation means the Circular movement of an object around one fixed point.

    * In rotation, the image after transformation remains constant.

    * Hence, it is called as a rigid transformation.

    * No Change in shape and size.

    * The Shape rotates counter- clockwise when the degrees is positive and rotates clockwise when degrees is negative.

    *The Rotation of a point (x, y) about origin and through angle alpha, then:
    New coordinates of a point (x, y) after it's rotation becomes  (x cosalpha - y sinalpha , y cosalpha + x sinalpha)

    Related Questions to study

    Grade-8
    Mathematics

    In rotation, the point (x, y) after moving 180°counter-clockwise will be

    Given That:
    In rotation, the point (x, y) after moving 180°counter-clockwise will be
    >>>Since, it is counter clockwise rotation the angle of rotation remains positive.
    >>>Therefore, the angle of rotation alpha becomes 180 degrees.
    >>>The new coordinates becomes:
    =  (x cosalpha - y sinalpha , y cosalpha + x sinalpha)
                         = (x cos(180) -y sin(180) , y cos(180) + x sin(180))
    = (-x , -y).
    ***Hence, the rotation of the point (x, y) through 180 degrees counter clockwise becomes (-x, -y).

    In rotation, the point (x, y) after moving 180°counter-clockwise will be

    MathematicsGrade-8

    Given That:
    In rotation, the point (x, y) after moving 180°counter-clockwise will be
    >>>Since, it is counter clockwise rotation the angle of rotation remains positive.
    >>>Therefore, the angle of rotation alpha becomes 180 degrees.
    >>>The new coordinates becomes:
    =  (x cosalpha - y sinalpha , y cosalpha + x sinalpha)
                         = (x cos(180) -y sin(180) , y cos(180) + x sin(180))
    = (-x , -y).
    ***Hence, the rotation of the point (x, y) through 180 degrees counter clockwise becomes (-x, -y).

    Grade-8
    Mathematics

    In rotation, the point (x, y) after moving 180° clockwise will be

    Given Data:
    In rotation, the point (x, y) after moving 180° clockwise will be
    >>> Since, the clockwise rotation denotes negative degrees the angle of rotation alpha becomes -180 degrees.
    >>>New Coordinates of a point (x, y) are:
     (x cosalpha - y sinalpha , y cosalpha + x sinalpha)
    = (x cos(-180) - y sin(-180) , y cos(-180) + x sin(-180))
    = (-x , -y).
    **Therefore, the rotation of the point (x, y) through 180 degrees clockwise gives (-x , -y).

    In rotation, the point (x, y) after moving 180° clockwise will be

    MathematicsGrade-8

    Given Data:
    In rotation, the point (x, y) after moving 180° clockwise will be
    >>> Since, the clockwise rotation denotes negative degrees the angle of rotation alpha becomes -180 degrees.
    >>>New Coordinates of a point (x, y) are:
     (x cosalpha - y sinalpha , y cosalpha + x sinalpha)
    = (x cos(-180) - y sin(-180) , y cos(-180) + x sin(-180))
    = (-x , -y).
    **Therefore, the rotation of the point (x, y) through 180 degrees clockwise gives (-x , -y).

    Grade-8
    Mathematics

    In rotation, the point (x, y) after moving 90° counter-clockwise will be

    Given That:
    In rotation, the point (x, y) after moving 90° counter-clockwise will be
    * We were asked to rotate the point (x, y) through 90 degrees counter clockwise.
    >Hence, the point after rotation becomes:
    = (x cosalpha - y sinalpha , y cosalpha  + x sinalpha)
    = (x cos(90) - y sin(90) , y cos(90) + x sin(90))
    = (-y , x ).
    >>>Hence, the rotation of the point (x, y) through 90 degrees counter clockwise becomes (-y, x). 

    In rotation, the point (x, y) after moving 90° counter-clockwise will be

    MathematicsGrade-8

    Given That:
    In rotation, the point (x, y) after moving 90° counter-clockwise will be
    * We were asked to rotate the point (x, y) through 90 degrees counter clockwise.
    >Hence, the point after rotation becomes:
    = (x cosalpha - y sinalpha , y cosalpha  + x sinalpha)
    = (x cos(90) - y sin(90) , y cos(90) + x sin(90))
    = (-y , x ).
    >>>Hence, the rotation of the point (x, y) through 90 degrees counter clockwise becomes (-y, x). 

    parallel
    Grade-8
    Mathematics

    In rotation, the point (x, y) after moving 90° clockwise will be

    Given That:
    In rotation, the point (x, y) after moving 90° clockwise will be
    >>point (x, y) will present in the 1st Quadrant.
    >>Since, to rotate the point in clockwise denotes backward movement of point.
    >> hence, the point is rotated to fourth Quadrant and the point changes to (y, -x).
    >>>Final point obtained on rotation of (x, y) by 90 degrees clockwise is (y, -x). 

    In rotation, the point (x, y) after moving 90° clockwise will be

    MathematicsGrade-8

    Given That:
    In rotation, the point (x, y) after moving 90° clockwise will be
    >>point (x, y) will present in the 1st Quadrant.
    >>Since, to rotate the point in clockwise denotes backward movement of point.
    >> hence, the point is rotated to fourth Quadrant and the point changes to (y, -x).
    >>>Final point obtained on rotation of (x, y) by 90 degrees clockwise is (y, -x). 

    Grade-8
    Mathematics

    In rotation, images after transformation will be

    Hence, we can say that the image or object transformation in rotation will be equal.

    In rotation, images after transformation will be

    MathematicsGrade-8

    Hence, we can say that the image or object transformation in rotation will be equal.

    Grade-8
    Mathematics

    Rotation is transformation that

    Hence, we can say that rotation is the transformation that rotates about a point.

    Rotation is transformation that

    MathematicsGrade-8

    Hence, we can say that rotation is the transformation that rotates about a point.

    parallel
    Congruence-and-Similarity
    Mathematics

    The value of m angle 8 text  if  end text m angle 3 equals 60 degree

    The value of m angle 8 text  if  end text m angle 3 equals 60 degree

    MathematicsCongruence-and-Similarity
    Congruence-and-Similarity
    Mathematics

    The value of m angle 1 plus m angle 2 is

    The value of m angle 1 plus m angle 2 is

    MathematicsCongruence-and-Similarity
    Congruence-and-Similarity
    Mathematics

    If the interior angles of triangle are x, 4x, (5x-13), then the value of x is

    If the interior angles of triangle are x, 4x, (5x-13), then the value of x is

    MathematicsCongruence-and-Similarity
    parallel
    Congruence-and-Similarity
    Mathematics

    From the figure, the value of x is

    From the figure, the value of x is

    MathematicsCongruence-and-Similarity
    Congruence-and-Similarity
    Mathematics

    The value of x If c parallel to d is

    The value of x If c parallel to d is

    MathematicsCongruence-and-Similarity
    Congruence-and-Similarity
    Mathematics

    The interior angles of triangle are 360, 440, 2xThen the value of x is

    The interior angles of triangle are 360, 440, 2xThen the value of x is

    MathematicsCongruence-and-Similarity
    parallel
    Congruence-and-Similarity
    Mathematics

    The angle of rotation of incrementFGH to increment straight F to the power of straight I straight G to the power of straight I straight H to the power of straight I is

    The angle of rotation of incrementFGH to increment straight F to the power of straight I straight G to the power of straight I straight H to the power of straight I is

    MathematicsCongruence-and-Similarity
    Congruence-and-Similarity
    Mathematics

    The image of the point straight P space open parentheses fraction numerator negative 7 over denominator 2 end fraction comma 2 over 7 close parentheses when rotated 180o counterclockwise direction about the origin is

    The image of the point straight P space open parentheses fraction numerator negative 7 over denominator 2 end fraction comma 2 over 7 close parentheses when rotated 180o counterclockwise direction about the origin is

    MathematicsCongruence-and-Similarity
    Congruence-and-Similarity
    Mathematics

    From the figure, The line of reflection is

    From the figure, The line of reflection is

    MathematicsCongruence-and-Similarity
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.