Mathematics
Grade9
Easy

Question

The steps of the proof are shown.
GIVEN ⇒ 2AB = AC
PROVE: AB = BC

1. 2AB = AC (Given)
2. AB + AB = AC (____)
3. AB + BC = AC (Segment Addition Postulate)
4. AB + AB = AB + BC (____)
5. AB = BC (Subtraction Property)
What is the reason for step 2?

  1. Given
  2. Distributive Property
  3. Substitution Property
  4. Transitive Property

hintHint:

In this question . we have given a line A following B and C. And given is 2AB = AC and we have to prove here AB = AC. Now have to find the step 2 reason. Use property of equality.

The correct answer is: Distributive Property


    Here, we have to find the steps 2 reason.
    Firstly, given a line A following B and C and 2AB = AC .
    Now ,
    1. 2AB = AC
    2. AB + AB = AC ( Distributive property)
    3. AB + BC = AC (Segment Addition Postulate)
    4. AB + AB = AB + BC (Substitution property )
    5. AB = BC ( subtraction property)
    Therefore , the reason of step 2 is distributive property.
    The correct answer is Distributive property
    Or,
    Distributive Property
    The whole proof:
    2AB = AC (Given)
    AB + AB = AC (Distributive Property)
    AB + BC = AC (Segment Addition Postulate)
    AB + AB = AB + BC (Substitution Property)
    AB = BC (Subtraction Property)


     

    Distributive Property: A crucial mathematical property that will help you solve many algebraic problems is the distributive property.
    The distributive property, also used as the distributive property of multiplication, demonstrates how to solve particular algebraic statements that combine addition and multiplication. For example, a number multiplied by a sum has the same effect as doing each multiplication separately, according to the literal definition of the distributive property.
    The distributive property appears in an equation: a(b+c)=ab+ac. The substitution property of equality, if two variables are equal, x and y, respectively, then x can be used in place of y in any equation or expression, and 'y' can is used in place of x.

    Related Questions to study

    Grade9
    Mathematics

    Give the reason for statement #4.
    Given: PS = RT, PQ = ST
    Prove: QS = RS

    Statement Reason
    1. PS = RT, PQ = ST
    1.
    2. PQ + QS = PS
    2.
    3. ST + QS = RT
    3.
    4. RS + ST = RT
    4.
    5. ST + QS = RS + ST
    5.
    6. QS = RS
    6.

    Geometrically, a line segment with three collinear points is subject to the segment addition postulate. By the segment addition postulate, point B will only be on the same line segment as points A and C if the sum of AB and BC equals AC if there are two given points on the segment between them, A and C. According to the segment addition postulate, if a line segment has endpoints A and C, and a third point B, then only if the equation AB + BC = AC is true does the third point B lie on the line segment AC. To further comprehend this postulate, look at the illustration provided below.

    Give the reason for statement #4.
    Given: PS = RT, PQ = ST
    Prove: QS = RS

    Statement Reason
    1. PS = RT, PQ = ST
    1.
    2. PQ + QS = PS
    2.
    3. ST + QS = RT
    3.
    4. RS + ST = RT
    4.
    5. ST + QS = RS + ST
    5.
    6. QS = RS
    6.

    MathematicsGrade9

    Geometrically, a line segment with three collinear points is subject to the segment addition postulate. By the segment addition postulate, point B will only be on the same line segment as points A and C if the sum of AB and BC equals AC if there are two given points on the segment between them, A and C. According to the segment addition postulate, if a line segment has endpoints A and C, and a third point B, then only if the equation AB + BC = AC is true does the third point B lie on the line segment AC. To further comprehend this postulate, look at the illustration provided below.

    Grade9
    Mathematics

    Find the measure of each angle in the diagram.

    Vertical angles are formed when two lines meet each other at a point. They are always equal to each other. In other words, whenever two lines cross or intersect each other, 4 angles are formed. We can observe that two angles that are opposite to each other are equal and they are called vertical angles.

    Find the measure of each angle in the diagram.

    MathematicsGrade9

    Vertical angles are formed when two lines meet each other at a point. They are always equal to each other. In other words, whenever two lines cross or intersect each other, 4 angles are formed. We can observe that two angles that are opposite to each other are equal and they are called vertical angles.

    Grade9
    Mathematics

    Two lines that are not perpendicular intersect such that ∠1 and ∠2 are a linear pair, ∠1 and ∠4 are a linear pair, and ∠1 and ∠3 are vertical angles. Tell whether the following statement is true or false.
    m angle 3 plus m angle 4 equals 180 degree

    Two angles are said to be supplementary is the sum of their measures is 180°.

    Two lines that are not perpendicular intersect such that ∠1 and ∠2 are a linear pair, ∠1 and ∠4 are a linear pair, and ∠1 and ∠3 are vertical angles. Tell whether the following statement is true or false.
    m angle 3 plus m angle 4 equals 180 degree

    MathematicsGrade9

    Two angles are said to be supplementary is the sum of their measures is 180°.

    parallel
    Grade9
    Mathematics

    Two lines that are not perpendicular intersect such that ∠1 and ∠2 are a linear pair, ∠1 and ∠4 are a linear pair, and ∠1 and ∠3 are vertical angles. Tell whether the following statement is true or false.
    angle 2 approximately equal to angle 4

    Vertical angles are always equal.

    Two lines that are not perpendicular intersect such that ∠1 and ∠2 are a linear pair, ∠1 and ∠4 are a linear pair, and ∠1 and ∠3 are vertical angles. Tell whether the following statement is true or false.
    angle 2 approximately equal to angle 4

    MathematicsGrade9

    Vertical angles are always equal.

    Grade9
    Mathematics

    Two lines that are not perpendicular intersect such that ∠1 and ∠2 are a linear pair, ∠1 and ∠4 are a linear pair, and ∠1 and ∠3 are vertical angles. Tell whether the following statement is true or false.
    angle 3 approximately equal to angle 2

    The sum of the angles of a linear pair is 180°.

    Two lines that are not perpendicular intersect such that ∠1 and ∠2 are a linear pair, ∠1 and ∠4 are a linear pair, and ∠1 and ∠3 are vertical angles. Tell whether the following statement is true or false.
    angle 3 approximately equal to angle 2

    MathematicsGrade9

    The sum of the angles of a linear pair is 180°.

    Grade9
    Mathematics

    Two lines that are not perpendicular intersect such that ∠1 and ∠2 are a linear pair, ∠1 and ∠4 are a linear pair, and ∠1 and ∠3 are vertical angles. Tell whether the following statement is true or false.
    angle 1 approximately equal to angle 4

    The sum of the angles of linear pair is 180°.

    Two lines that are not perpendicular intersect such that ∠1 and ∠2 are a linear pair, ∠1 and ∠4 are a linear pair, and ∠1 and ∠3 are vertical angles. Tell whether the following statement is true or false.
    angle 1 approximately equal to angle 4

    MathematicsGrade9

    The sum of the angles of linear pair is 180°.

    parallel
    Grade9
    Mathematics

    Two lines that are not perpendicular intersect such that ∠1 and ∠2 are a linear pair, ∠1 and ∠4 are a linear pair, and ∠1 and ∠3 are vertical angles. Tell whether the following statement is true or false.
    angle 1 approximately equal to angle 3

    Vertical angles are always equal.

    Two lines that are not perpendicular intersect such that ∠1 and ∠2 are a linear pair, ∠1 and ∠4 are a linear pair, and ∠1 and ∠3 are vertical angles. Tell whether the following statement is true or false.
    angle 1 approximately equal to angle 3

    MathematicsGrade9

    Vertical angles are always equal.

    Grade9
    Mathematics

    Two lines that are not perpendicular intersect such that ∠1 and ∠2 are a linear pair, ∠1 and ∠4 are a linear pair, and ∠1 and ∠3 are vertical angles. Tell whether the following statement is true or false.
    angle 1 approximately equal to angle 2

    Here, sum of angles 1 and 2 is 180°.

    Two lines that are not perpendicular intersect such that ∠1 and ∠2 are a linear pair, ∠1 and ∠4 are a linear pair, and ∠1 and ∠3 are vertical angles. Tell whether the following statement is true or false.
    angle 1 approximately equal to angle 2

    MathematicsGrade9

    Here, sum of angles 1 and 2 is 180°.

    Grade9
    Mathematics

    Which property does the statement illustrate?
    text  If  end text angle 1 approximately equal to angle 2 text  and  end text angle 2 approximately equal to angle 4 text , then  end text angle 1 approximately equal to angle 4 text .  end text

    Same applies on number and shapes.

    Which property does the statement illustrate?
    text  If  end text angle 1 approximately equal to angle 2 text  and  end text angle 2 approximately equal to angle 4 text , then  end text angle 1 approximately equal to angle 4 text .  end text

    MathematicsGrade9

    Same applies on number and shapes.

    parallel
    Grade9
    Mathematics

    Which property does the statement illustrate?
    text  If  end text stack H J with bar on top approximately equal to stack L M with bar on top text , then  end text stack L M with bar on top approximately equal to stack H J with bar on top.

    If a=b, then b = a.

    Which property does the statement illustrate?
    text  If  end text stack H J with bar on top approximately equal to stack L M with bar on top text , then  end text stack L M with bar on top approximately equal to stack H J with bar on top.

    MathematicsGrade9

    If a=b, then b = a.

    Grade9
    Mathematics

    Find the measure of each angle in the diagram.

    Find the measure of each angle in the diagram.

    MathematicsGrade9
    Grade9
    Mathematics

    Complete the statement with <, >, or =.

    If m∠ 4 = 30, then m∠ 5? m∠ 4.

    When two angles are formed on a straight line, they are called linear pair.

    Complete the statement with <, >, or =.

    If m∠ 4 = 30, then m∠ 5? m∠ 4.

    MathematicsGrade9

    When two angles are formed on a straight line, they are called linear pair.

    parallel
    Grade9
    Mathematics

    Complete the statement with <, >, or =.

    m∠ 8 + m∠ 6? 150

    When two angles are formed on a straight line, they are called linear pair.

    Complete the statement with <, >, or =.

    m∠ 8 + m∠ 6? 150

    MathematicsGrade9

    When two angles are formed on a straight line, they are called linear pair.

    Grade9
    Mathematics

    What is the reason for statement 2?
    angle Y X Z approximately equal to angle S U T text . Complete the proof that  end text stack T V with left right arrow on top ‖ stack W Y with left right arrow on top text .  end text

      Statement Reason
    1 angle Y X Z approximately equal to angle S U T  
    2 angle S U T approximately equal to angle V U X  
    3 angle Y X Z approximately equal to angle V U X  

    Alternate exterior angles are always equal.

    What is the reason for statement 2?
    angle Y X Z approximately equal to angle S U T text . Complete the proof that  end text stack T V with left right arrow on top ‖ stack W Y with left right arrow on top text .  end text

      Statement Reason
    1 angle Y X Z approximately equal to angle S U T  
    2 angle S U T approximately equal to angle V U X  
    3 angle Y X Z approximately equal to angle V U X  

    MathematicsGrade9

    Alternate exterior angles are always equal.

    Grade9
    Mathematics

    What is the reason for statement 3?
    angle Y X Z approximately equal to angle S U T text . Complete the proof that  end text stack T V with left right arrow on top ‖ stack W Y with left right arrow on top text .  end text

      Statement Reason
    1 angle Y X Z approximately equal to angle S U T  
    2 angle S U T approximately equal to angle V U X  
    3 angle Y X Z approximately equal to angle V U X  

    Corresponding angles are equal.

    What is the reason for statement 3?
    angle Y X Z approximately equal to angle S U T text . Complete the proof that  end text stack T V with left right arrow on top ‖ stack W Y with left right arrow on top text .  end text

      Statement Reason
    1 angle Y X Z approximately equal to angle S U T  
    2 angle S U T approximately equal to angle V U X  
    3 angle Y X Z approximately equal to angle V U X  

    MathematicsGrade9

    Corresponding angles are equal.

    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.