Mathematics
Grade10
Easy

Question

The vertex of the graph of quadratic function is _________.

  1. (2, 3)    
  2. (0, 0)    
  3. open parentheses fraction numerator 1 over denominator 7 end fraction comma blank fraction numerator 9 over denominator 7 end fraction close parentheses    
  4. open parentheses fraction numerator 1 over denominator 2 end fraction comma negative fraction numerator 9 over denominator 4 end fraction close parentheses    

hintHint:

When a graph crosses its symmetry axes, the vertex formula in mathematics can be used to get the vertex coordinate of a parabola. Here we have given the equation as x2-x-2=0 and we have to find the vertex of the given equation.

The correct answer is: open parentheses fraction numerator 1 over denominator 2 end fraction comma negative fraction numerator 9 over denominator 4 end fraction close parentheses


    The parabola's vertex is where its axis of symmetry is crossed at (h, k). Vertex location is determined by the parabola's standard equation.
    The vertex point is often represented by (h, k). We are aware that a parabola's conventional equation is y=ax2+bx+c. The vertex in this case should be near the base of the U-shaped curve if the coefficient of x2 is positive. The vertex should be at the peak of the U-shaped curve if the coefficient of x2 is negative.
    The vertex of a quadratic equation in the standard form is open parentheses – fraction numerator b over denominator 2 a end fraction comma f open parentheses – fraction numerator b over denominator 2 a end fraction close parentheses close parentheses.
    a, b and c are the terms which are present in the quadratic equation. So we have the equation as:
    x- x - 2 = 0
    Here a=1, b=-1, c=-2
    x - coordinate = open parentheses – fraction numerator left parenthesis negative 1 right parenthesis over denominator 2 open parentheses 1 close parentheses end fraction comma f open parentheses – fraction numerator left parenthesis negative 1 right parenthesis over denominator 2 open parentheses 1 close parentheses end fraction close parentheses close parentheses
    = open parentheses fraction numerator 1 over denominator 2 end fraction comma f open parentheses fraction numerator 1 over denominator 2 end fraction close parentheses close parentheses
    = open parentheses fraction numerator 1 over denominator 2 end fraction comma left parenthesis fraction numerator 1 over denominator 4 end fraction minus fraction numerator 1 over denominator 2 end fraction minus 2 right parenthesis close parentheses
    = open parentheses fraction numerator 1 over denominator 2 end fraction comma negative fraction numerator 9 over denominator 4 end fraction close parentheses

    Here we used the concept of vertex of the parabola which is basically represented by (h, k).  We used the vertex formula to find the vertex of the given equation.  So the vertex of the equation x2-x-2=0 is  open parentheses fraction numerator 1 over denominator 2 end fraction comma negative fraction numerator 9 over denominator 4 end fraction close parentheses.

    Related Questions to study

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.