Maths-
General
Easy

Question

A person predicts the outcome of 20 cricket matches of his home team. Each match can result either in a win, loss or tie for the home team. Total number of ways in which he can make the predictions so that exactly 10 predictions are correct, is equal to :

  1. 20C10.210    
  2. 20C10 310
       
  3. 20C10.310    
  4. 20C10.220    

hintHint:

There are total 20 matches and the outcome can either be win, lose or tie. We have to find the number of ways in which exactly 10 predictions are correct which can be shown byC presuperscript 20 subscript 10

The correct answer is: 20C10.210


    There are total 20 matches and the outcome can either be win, lose or tie.
    We have to find the number of ways in which exactly 10 predictions are correct which can be shown by C presuperscript 20 subscript 10 ways in which his prediction is correct.
    And in the remaining 10 matches, he makes wrong predictions i.e. out of 3 outcomes (win, lose, tie) he can pick 2 outcomes out of 3 , which can be done in 2 to the power of 10 ways.
    Thus, total number of ways in which he can make the predictions so that exactly 10 predictions are correct, is equal to C presuperscript 20 subscript 10 cross times 2 to the power of 10

    Related Questions to study

    General
    Maths-

    The sum of all the numbers that can be formed with the digits 2, 3, 4, 5 taken all at a time is (repetition is not allowed) :

     Alternatively, we can use the formula for the sum of numbers as
    left parenthesis n minus 1 right parenthesis factorial space cross times space left parenthesis S u m space o f space d i g i t s right parenthesis space cross times left parenthesis 11111...... space n t i m e s right parenthesis
    We can also solve this problem by writing all the possible numbers and finding the sum of them which will be time taking and make us confused. We should know that the value of the digits is determined by the place where they were present. We should check whether there is zero in the given digits and whether there are any repetitions present in the numbers. Similarly, we can expect problems to find the sum of numbers formed by these digits with repetition allowed.

    The sum of all the numbers that can be formed with the digits 2, 3, 4, 5 taken all at a time is (repetition is not allowed) :

    Maths-General

     Alternatively, we can use the formula for the sum of numbers as
    left parenthesis n minus 1 right parenthesis factorial space cross times space left parenthesis S u m space o f space d i g i t s right parenthesis space cross times left parenthesis 11111...... space n t i m e s right parenthesis
    We can also solve this problem by writing all the possible numbers and finding the sum of them which will be time taking and make us confused. We should know that the value of the digits is determined by the place where they were present. We should check whether there is zero in the given digits and whether there are any repetitions present in the numbers. Similarly, we can expect problems to find the sum of numbers formed by these digits with repetition allowed.

    General
    Maths-

    Total number of divisors of 480, that are of the form 4n + 2, n greater or equal than 0, is equal to :

    We can also solve this question by writing 4n + 2 = 2(2n + 1) where 2n + 1 is always an odd number. So, when all odd divisors will be multiplied by 2, we will get the divisors that we require. Hence, we can say a number of divisors of 4n + 2 form is the same as the number of odd divisors for 480.

    Total number of divisors of 480, that are of the form 4n + 2, n greater or equal than 0, is equal to :

    Maths-General

    We can also solve this question by writing 4n + 2 = 2(2n + 1) where 2n + 1 is always an odd number. So, when all odd divisors will be multiplied by 2, we will get the divisors that we require. Hence, we can say a number of divisors of 4n + 2 form is the same as the number of odd divisors for 480.

    General
    Maths-

    If 9P5 + 5 9P4 = scriptbase P subscript r end scriptbase presuperscript 10, then r =

    H e r e space w e space h a v e space o b t a i n e d space t h e space v a l u e space o f space t h e space v a r i a b l e space u s e d space i n space t h e space e x p r e s s i o n.
W e space h a v e space a l s o space u s e d space t h e space f o r m u l a space o f space p e r m u t a t i o n space h e r e. space
H e r e comma space scriptbase P subscript r space m e a n s space t h e space n u m b e r space o f space w a y s space t o space c h o o s e space r space space d i f f e r e n t space t h i n g s space f r o m space t h e space s e t space o f space n space space t h i n g s space w i t h o u t space r e p l a c e m e n t. space end scriptbase presuperscript n
H e r e space w e space n e e d space t o space k n o w space t h e space m e t h o d space o f space f i n d i n g space t h e space f a c t o r i a l space o f space a n y space n u m b e r. space F a c t o r i a l space i s space d e f i n e d space a s space t h e space m u l t i p l i c a t i o n space o f space a l l space t h e space w h o l e space n u m b e r s space f r o m space t h e space g i v e n space n u m b e r space d o w n space t o space t h e space n u m b e r space 1.

    If 9P5 + 5 9P4 = scriptbase P subscript r end scriptbase presuperscript 10, then r =

    Maths-General

    H e r e space w e space h a v e space o b t a i n e d space t h e space v a l u e space o f space t h e space v a r i a b l e space u s e d space i n space t h e space e x p r e s s i o n.
W e space h a v e space a l s o space u s e d space t h e space f o r m u l a space o f space p e r m u t a t i o n space h e r e. space
H e r e comma space scriptbase P subscript r space m e a n s space t h e space n u m b e r space o f space w a y s space t o space c h o o s e space r space space d i f f e r e n t space t h i n g s space f r o m space t h e space s e t space o f space n space space t h i n g s space w i t h o u t space r e p l a c e m e n t. space end scriptbase presuperscript n
H e r e space w e space n e e d space t o space k n o w space t h e space m e t h o d space o f space f i n d i n g space t h e space f a c t o r i a l space o f space a n y space n u m b e r. space F a c t o r i a l space i s space d e f i n e d space a s space t h e space m u l t i p l i c a t i o n space o f space a l l space t h e space w h o l e space n u m b e r s space f r o m space t h e space g i v e n space n u m b e r space d o w n space t o space t h e space n u m b e r space 1.

    parallel
    General
    maths-

    Assertion (A) :If fraction numerator 5 x plus 1 over denominator left parenthesis x plus 2 right parenthesis left parenthesis x minus 1 right parenthesis end fraction equals fraction numerator A over denominator x plus 2 end fraction plus fraction numerator B over denominator x minus 1 end fraction, then A equals 3 comma B equals 2
    Reason (R) :fraction numerator P x plus q over denominator left parenthesis x minus a right parenthesis left parenthesis x minus b right parenthesis end fraction equals fraction numerator P a plus q over denominator left parenthesis x minus a right parenthesis left parenthesis a minus b right parenthesis end fraction plus fraction numerator P b plus q over denominator left parenthesis x minus b right parenthesis left parenthesis b minus a right parenthesis end fraction

    Assertion (A) :If fraction numerator 5 x plus 1 over denominator left parenthesis x plus 2 right parenthesis left parenthesis x minus 1 right parenthesis end fraction equals fraction numerator A over denominator x plus 2 end fraction plus fraction numerator B over denominator x minus 1 end fraction, then A equals 3 comma B equals 2
    Reason (R) :fraction numerator P x plus q over denominator left parenthesis x minus a right parenthesis left parenthesis x minus b right parenthesis end fraction equals fraction numerator P a plus q over denominator left parenthesis x minus a right parenthesis left parenthesis a minus b right parenthesis end fraction plus fraction numerator P b plus q over denominator left parenthesis x minus b right parenthesis left parenthesis b minus a right parenthesis end fraction

    maths-General
    General
    physics-

    A particle is released from a height. At certain height its kinetic energy is three times its potential energy. The height and speed of the particle at that instant are respectively

    A particle is released from a height. At certain height its kinetic energy is three times its potential energy. The height and speed of the particle at that instant are respectively

    physics-General
    General
    Maths-

    If x is real, then maximum value of fraction numerator 3 x to the power of 2 end exponent plus 9 x plus 17 over denominator 3 x to the power of 2 end exponent plus 9 x plus 7 end fraction is

    If x is real, then maximum value of fraction numerator 3 x to the power of 2 end exponent plus 9 x plus 17 over denominator 3 x to the power of 2 end exponent plus 9 x plus 7 end fraction is

    Maths-General
    parallel
    General
    Maths-

    The value of 'c' of Lagrange's mean value theorem for f space left parenthesis x right parenthesis equals x squared minus 3 x minus 2 text  for  end text x element of left square bracket negative 1 , 2 right square bracket is

    The value of 'c' of Lagrange's mean value theorem for f space left parenthesis x right parenthesis equals x squared minus 3 x minus 2 text  for  end text x element of left square bracket negative 1 , 2 right square bracket is

    Maths-General
    General
    Maths-

    The value of 'c' of Rolle's mean value theorem for f space left parenthesis x right parenthesis equals vertical line x vertical line equals i n space left square bracket negative 1 , 1 right square bracket is

    The value of 'c' of Rolle's mean value theorem for f space left parenthesis x right parenthesis equals vertical line x vertical line equals i n space left square bracket negative 1 , 1 right square bracket is

    Maths-General
    General
    Maths-

    The value of 'c' of Rolle's theorem for f space left parenthesis x right parenthesis equals l o g space open parentheses x squared plus 2 close parenthesesl o g subscript 3 end subscript on [–1, 1] is

    The value of 'c' of Rolle's theorem for f space left parenthesis x right parenthesis equals l o g space open parentheses x squared plus 2 close parenthesesl o g subscript 3 end subscript on [–1, 1] is

    Maths-General
    parallel
    General
    Maths-

    For f space left parenthesis x right parenthesis equals 4 minus left parenthesis 6 minus x right parenthesis to the power of 2 divided by 3 end exponent in [5, 7]

    For f space left parenthesis x right parenthesis equals 4 minus left parenthesis 6 minus x right parenthesis to the power of 2 divided by 3 end exponent in [5, 7]

    Maths-General
    General
    Maths-

    The value of 'c' in Lagrange's mean value theorem for f space left parenthesis x right parenthesis equals x cubed minus 2 x squared minus x plus 4 in [0, 1] is

    The value of 'c' in Lagrange's mean value theorem for f space left parenthesis x right parenthesis equals x cubed minus 2 x squared minus x plus 4 in [0, 1] is

    Maths-General
    General
    Maths-

    The value of 'c' in Lagrange's mean value theorem for f space left parenthesis x right parenthesis equals x space left parenthesis x minus 2 right parenthesis squared in [0, 2] is

    The value of 'c' in Lagrange's mean value theorem for f space left parenthesis x right parenthesis equals x space left parenthesis x minus 2 right parenthesis squared in [0, 2] is

    Maths-General
    parallel
    General
    Maths-

    The equation r equals a c o s space theta plus b s i n space theta represents

    The equation r equals a c o s space theta plus b s i n space theta represents

    Maths-General
    General
    Maths-

    The polar equation of the circle whose end points of the diameter are open parentheses square root of 2 comma fraction numerator pi over denominator 4 end fraction close parentheses and open parentheses square root of 2 comma fraction numerator 3 pi over denominator 4 end fraction close parentheses is

    The polar equation of the circle whose end points of the diameter are open parentheses square root of 2 comma fraction numerator pi over denominator 4 end fraction close parentheses and open parentheses square root of 2 comma fraction numerator 3 pi over denominator 4 end fraction close parentheses is

    Maths-General
    General
    Maths-

    The radius of the circle r equals 8 s i n space theta plus 6 c o s space theta is

    The radius of the circle r equals 8 s i n space theta plus 6 c o s space theta is

    Maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.