Maths-
General
Easy

Question

Consider the cubic equation x cubed minus left parenthesis 1 plus cos space theta plus sin space theta right parenthesis x squared plus left parenthesis cos space theta sin space theta plus cos space theta plus sin space theta right parenthesis x minus sin space theta cos space theta equals 0 whose roots are x1, x2, and x3

The value of x subscript 1 superscript 2 plus x subscript 2 superscript 2 plus x subscript 3 superscript 2 equals

  1. 1
  2. 2
  3. 2 costheta
  4. sin space theta left parenthesis sin space theta plus cos space theta right parenthesis

hintHint:

In this question, we have given a cubic equation. which isx cubed minus left parenthesis 1 plus c o s theta plus s i n theta right parenthesis x squared plus left parenthesis c o s theta s i n theta plus c o s theta plus s i n theta right parenthesis x minus s i n theta c o s theta equals 0.
We have given roots is x 1 comma space x 2 comma x 3 space. We have to find the x 1 squared plus x 2 squared plus x 3 squared. For that use the do left parenthesis x 1 plus x 2 plus x 3 right parenthesis squared and find the product of root and sum of root then substitute them into it.

The correct answer is: 2


    Here we have to find the x 1 squared plus x 2 squared plus x 3 squared.
    We know that
    left parenthesis x 1 plus x 2 plus x 3 right parenthesis squared equals x 1 squared plus x 2 squared plus x 3 squared plus 2 left parenthesis x 1 x 2 plus x 2 x 3 plus x 3 x 1 right parenthesis
    We have cubic equation that is ,
    x cubed minus left parenthesis 1 plus c o s theta plus s i n theta right parenthesis x squared plus left parenthesis c o s theta s i n theta plus c o s theta plus s i n theta right parenthesis x – s i n theta. c o s theta equals 0In this equation,
    The sum of root = negative b over a
    left parenthesis space x 1 space plus space x 2 space plus space x 3 space right parenthesis space equals space 1 plus cos theta plus sin theta space minus negative negative negative negative left parenthesis 1 right parenthesis
    And product of roots = c over a
    x 1 x 2 space plus space x 2 x 3 space plus space x 3 x 1 space equals space cos theta space sin theta space plus space cos theta space plus space sin theta space minus negative negative negative negative negative left parenthesis 2 right parenthesis
    we have,
    left parenthesis x 1 plus x 2 plus x 3 right parenthesis squared equals x 1 squared plus x 2 squared plus x 3 squared plus 2 left parenthesis x 1 x 2 plus x 2 x 3 plus x 3 x 1 right parenthesis
    equals greater than left parenthesis 1 plus c o s theta plus s i n theta right parenthesis squared equals x 1 squared plus x 2 squared plus x 3 squared plus 2 left parenthesis c o s theta s i n theta plus c o s theta plus s i n theta right parenthesis
    equals greater than 1 plus c o s squared theta plus s i n squared theta plus 2 c o s theta plus 2 c o s theta. s i n theta plus 2 s i n theta equals x 1 squared plus x 2 squared plus x 3 squared plus 2 c o s theta s i n theta plus 2 c o s theta plus 2 s i n theta
    equals greater than x 1 squared plus x 2 squared plus x 3 squared equals 1 plus left parenthesis c o s squared theta plus s i n squared theta right parenthesis plus left parenthesis 2 c o s theta plus 2 c o s theta. s i n theta plus 2 s i n theta right parenthesis – left parenthesis 2 c o s theta s i n theta plus 2 c o s theta plus 2 s i n theta right parenthesis
    equals greater than x 1 squared plus x 2 squared plus x 3 squared equals 1 plus 1 plus 0
    equals greater than x 1 squared plus x 2 squared plus x 3 squared equals 2
    Therefore, the value of x 1 squared plus x 2 squared plus x 3 squared i s 2.
    The correct answer is 2.

    In this question, we have to given the cubic equation and its root x1,x2,x3 and we have to find the
    x 1 squared plus x 2 squared plus x 3 squared.Use, left parenthesis x 1 plus x 2 plus x 3 right parenthesis squared equals x 1 squared plus x 2 squared plus x 3 squared plus 2 left parenthesis x 1 x 2 plus x 2 x 3 plus x 3 x 1 right parenthesis and sum of roots is fraction numerator negative c over denominator a end fraction and product of roots is b/a.

    Related Questions to study

    General
    Maths-

    Let A be a square matrix. Then which of the following is not a symmetric matrix -

    Let A be a square matrix. Then which of the following is not a symmetric matrix -

    Maths-General
    General
    Maths-

    If A is a square matrix, then A– straight A to the power of straight prime is -

    If A is a square matrix, then A– straight A to the power of straight prime is -

    Maths-General
    General
    maths-

    If A is symmetric matrix and B is a skew- symmetric matrix, then for n element of N, false statement is -

    If A is symmetric matrix and B is a skew- symmetric matrix, then for n element of N, false statement is -

    maths-General
    parallel
    General
    Maths-

    If A  negative A to the power of straight prime= 0, then straight A to the power of straight prime is -

    If A  negative A to the power of straight prime= 0, then straight A to the power of straight prime is -

    Maths-General
    General
    Maths-

    If A is a matrix of order 3 × 4, then both ABT and BTA are defined if order of B is -

    If A is a matrix of order 3 × 4, then both ABT and BTA are defined if order of B is -

    Maths-General
    General
    maths-

    If A =open square brackets table row cell cos invisible function application alpha end cell cell sin invisible function application alpha end cell row cell negative sin invisible function application alpha end cell cell cos invisible function application alpha end cell end table close square brackets, then Astraight A to the power of straight prime equals -

    If A =open square brackets table row cell cos invisible function application alpha end cell cell sin invisible function application alpha end cell row cell negative sin invisible function application alpha end cell cell cos invisible function application alpha end cell end table close square brackets, then Astraight A to the power of straight prime equals -

    maths-General
    parallel
    General
    chemistry-

    The ratio of the gases obtained on dehydration ofHCOOH and  H subscript 2 C subscript 2 O subscript 4 space b y space c o n c. H subscript 2 S O subscript 4

    The ratio of the gases obtained on dehydration ofHCOOH and  H subscript 2 C subscript 2 O subscript 4 space b y space c o n c. H subscript 2 S O subscript 4

    chemistry-General
    General
    maths-

    If A = open square brackets table row 3 x row y 0 end table close square brackets and A = AT, then -

    If A = open square brackets table row 3 x row y 0 end table close square brackets and A = AT, then -

    maths-General
    General
    Maths-

    For suitable matrices A, B; the false statement is-

    For suitable matrices A, B; the false statement is-

    Maths-General
    parallel
    General
    maths-

    If A =open square brackets table row a b row b a end table close square brackets, then |A +AT| equals -

    If A =open square brackets table row a b row b a end table close square brackets, then |A +AT| equals -

    maths-General
    General
    Maths-

    If A= open square brackets table row cell cos invisible function application theta end cell cell negative sin invisible function application theta end cell row cell sin invisible function application theta end cell cell cos invisible function application theta end cell end table close square brackets, then AAT equals-

    If A= open square brackets table row cell cos invisible function application theta end cell cell negative sin invisible function application theta end cell row cell sin invisible function application theta end cell cell cos invisible function application theta end cell end table close square brackets, then AAT equals-

    Maths-General
    General
    Maths-

    If A = open square brackets table row 3 2 row 1 4 end table close square brackets and B =open square brackets table row cell negative 1 end cell 2 row cell negative 1 end cell 1 end table close square brackets, then correct statement is -

    If A = open square brackets table row 3 2 row 1 4 end table close square brackets and B =open square brackets table row cell negative 1 end cell 2 row cell negative 1 end cell 1 end table close square brackets, then correct statement is -

    Maths-General
    parallel
    General
    Maths-

    If A, B, C, are three matrices, then AT + BT + CT is -

    If A, B, C, are three matrices, then AT + BT + CT is -

    Maths-General
    General
    Maths-

    If A and B are matrices of order m × n and n × m respectively, then the order of matrix BT (AT)T is -

    If A and B are matrices of order m × n and n × m respectively, then the order of matrix BT (AT)T is -

    Maths-General
    General
    Maths-

    If A = open square brackets table row 1 2 row cell negative 1 end cell 2 end table close square brackets and B =open square brackets table row 3 4 row 2 cell negative 2 end cell end table close square brackets , then (AB)T is-

    If A = open square brackets table row 1 2 row cell negative 1 end cell 2 end table close square brackets and B =open square brackets table row 3 4 row 2 cell negative 2 end cell end table close square brackets , then (AB)T is-

    Maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.