Maths-
General
Easy

Question

If a sphere of constant radius k passes through the origin and meets the axis in A, B, C then the centroid of the triangle ABC lies on

  1. 9 (x2 + y2 + z2)= k2    
  2. 9 (x2 + y2 + z2)= 4k2    
  3. x2 + y2 + z2 = k2    
  4. x2 + y2 + z2 = 4k2    

The correct answer is: 9 (x2 + y2 + z2)= 4k2


    In this question we should find the locus of the centroid of ABC
    L e t space t h e space e q u a t i o n space o f space t h e space s p h e r e space b e space space left parenthesis x minus alpha right parenthesis squared space space plus left parenthesis y minus beta right parenthesis squared space plus left parenthesis z minus gamma right parenthesis squared space equals k to the power of 2 end exponent
space S i n c e space i t space p a s s e s space t h r o u g h space t h e space o r i g i n space space
therefore alpha squared space space plus beta squared space plus gamma squared equals space k squared space space space a n d space m e e t s space t h e space c o o r d i n a t e space a x i s space a t space t h e space p o i n t space A left parenthesis 2 alpha comma 0 comma 0 right parenthesis comma beta left parenthesis 0 comma 2 beta comma 0 right parenthesis comma c left parenthesis 0 comma 0 comma 2 gamma right parenthesis space
T h e space c e n t r o i d space o f space t h e space t r i a n g l e space A B C space i s space space left parenthesis space space 2 space 2 alpha space ​ space space comma space space 3 space 2 beta space ​ space space comma space space 3 space 2 gamma space ​ space space right parenthesis equals left parenthesis u comma v comma w right parenthesis space
T h e n space u squared space space plus v squared space space plus w squared space space equals left parenthesis space 9 space 4 space right parenthesis left parenthesis alpha squared space space plus beta squared space plus gamma squared space space right parenthesis equals left parenthesis space 9 space 4 space space right parenthesis equals k squared space space space space
T h u s space left parenthesis u comma v comma w right parenthesis space l i e s space o n space 9 left parenthesis x to the power of 2 to the power of blank end exponent space space plus y squared space space plus z squared space space right parenthesis equals 4 k squared

    Hence option 2 is correct

    Related Questions to study

    General
    Maths-

    The equation of the sphere circumscribing the tetrahedron whose faces are x = 0, y = 0, z = 0 and fraction numerator x over denominator a end fraction plus fraction numerator y over denominator b end fraction plus fraction numerator z over denominator c end fraction equals 1 comma is equal to

    The equation of the sphere circumscribing the tetrahedron whose faces are x = 0, y = 0, z = 0 and fraction numerator x over denominator a end fraction plus fraction numerator y over denominator b end fraction plus fraction numerator z over denominator c end fraction equals 1 comma is equal to

    Maths-General
    General
    Maths-

    The lines fraction numerator x minus 2 over denominator 1 end fraction equals fraction numerator y minus 3 over denominator 1 end fraction equals fraction numerator z minus 4 over denominator negative lambda end fraction and fraction numerator x minus 1 over denominator lambda end fraction equals fraction numerator y minus 4 over denominator 2 end fraction equals fraction numerator z minus 5 over denominator 1 end fraction are coplanar if l is

    The lines fraction numerator x minus 2 over denominator 1 end fraction equals fraction numerator y minus 3 over denominator 1 end fraction equals fraction numerator z minus 4 over denominator negative lambda end fraction and fraction numerator x minus 1 over denominator lambda end fraction equals fraction numerator y minus 4 over denominator 2 end fraction equals fraction numerator z minus 5 over denominator 1 end fraction are coplanar if l is

    Maths-General
    General
    Maths-

    The line fraction numerator x minus 2 over denominator 3 end fraction equals fraction numerator y plus 1 over denominator 2 end fraction equals fraction numerator z minus 1 over denominator negative 1 end fraction intersects the curve xy = c2, z = 0 if c =

    The line fraction numerator x minus 2 over denominator 3 end fraction equals fraction numerator y plus 1 over denominator 2 end fraction equals fraction numerator z minus 1 over denominator negative 1 end fraction intersects the curve xy = c2, z = 0 if c =

    Maths-General
    parallel
    General
    Maths-

    stack lim with x rightwards arrow 0 below invisible function application fraction numerator e to the power of alpha x end exponent minus e to the power of beta x end exponent over denominator s i n alpha x minus s i n beta x end fraction equals

    stack lim with x rightwards arrow 0 below invisible function application fraction numerator e to the power of alpha x end exponent minus e to the power of beta x end exponent over denominator s i n alpha x minus s i n beta x end fraction equals

    Maths-General
    General
    Maths-

    Equation of the plane through the points (2, 1, -1) and (-1, 3, 2) and perpendicular to the plane x – 2y + 4z = 0 is given by

    Equation of the plane through the points (2, 1, -1) and (-1, 3, 2) and perpendicular to the plane x – 2y + 4z = 0 is given by

    Maths-General
    General
    Maths-

    I f blank f to the power of 1 end exponent open parentheses 0 close parentheses equals 3 blank t h e n blank stack lim with x rightwards arrow 0 below invisible function application fraction numerator x to the power of 2 end exponent over denominator f open parentheses x to the power of 2 end exponent close parentheses minus 6. f open parentheses 4 x to the power of 2 end exponent close parentheses plus 5. f open parentheses 7 x to the power of 2 end exponent close parentheses end fraction equals

    I f blank f to the power of 1 end exponent open parentheses 0 close parentheses equals 3 blank t h e n blank stack lim with x rightwards arrow 0 below invisible function application fraction numerator x to the power of 2 end exponent over denominator f open parentheses x to the power of 2 end exponent close parentheses minus 6. f open parentheses 4 x to the power of 2 end exponent close parentheses plus 5. f open parentheses 7 x to the power of 2 end exponent close parentheses end fraction equals

    Maths-General
    parallel
    General
    Maths-

    stack lim with x blank rightwards arrow 1 below invisible function application open parentheses log subscript 5 end subscript invisible function application 5 x close parentheses to the power of log subscript x end subscript invisible function application 5 end exponent equals

    stack lim with x blank rightwards arrow 1 below invisible function application open parentheses log subscript 5 end subscript invisible function application 5 x close parentheses to the power of log subscript x end subscript invisible function application 5 end exponent equals

    Maths-General
    General
    Maths-

    The four points (0, 4, 3) , (-1, -5, -3) , (-2, -2, 1) and (1, 1, -1) lie in the plane

    The four points (0, 4, 3) , (-1, -5, -3) , (-2, -2, 1) and (1, 1, -1) lie in the plane

    Maths-General
    General
    Maths-

    The equation of a plane and condition of two planes being parallel or perpendicular.
    A) Every equation of first degree in x, y, z, i. e., Ax + By + Cz + D = 0 represents a plane. The coefficients of x, y, z are the direction ratios of the normal to the plane.
    B) Angle between two planes is equal to the angle between the normals to the planes.
    \ cos q = fraction numerator A subscript 1 end subscript A subscript 2 end subscript plus B subscript 1 end subscript B subscript 2 end subscript plus C subscript 1 end subscript C subscript 2 end subscript over denominator square root of not stretchy sum A subscript 1 end subscript superscript 2 end superscript end root. square root of not stretchy sum A subscript 2 end subscript superscript 2 end superscript end root end fraction
    Planes are perpendicular if å A1 A2 = 0 and parallel if fraction numerator A subscript 1 end subscript over denominator A subscript 2 end subscript end fraction equals fraction numerator B subscript 1 end subscript over denominator B subscript 2 end subscript end fraction equals fraction numerator C subscript 1 end subscript over denominator C subscript 2 end subscript end fraction.
    C) Planes parallel to co – ordinate planes are x = l, y = l or z = l.
    Planes perpendicular to co – ordinate planes x = 0, y = 0, z = 0 are
    by + cz + d = 0 (x missing), ax + cz + d = 0
    (y missing), ax + by + d = 0 (z missing) Find the equation of the plane through the intersection of the planes x + 2y + 3z – 4 = 0 and 2x + y – z + 5 = 0 and perpendicular to the plane 5x + 3y + 6z + 8 = 0 is

    The equation of a plane and condition of two planes being parallel or perpendicular.
    A) Every equation of first degree in x, y, z, i. e., Ax + By + Cz + D = 0 represents a plane. The coefficients of x, y, z are the direction ratios of the normal to the plane.
    B) Angle between two planes is equal to the angle between the normals to the planes.
    \ cos q = fraction numerator A subscript 1 end subscript A subscript 2 end subscript plus B subscript 1 end subscript B subscript 2 end subscript plus C subscript 1 end subscript C subscript 2 end subscript over denominator square root of not stretchy sum A subscript 1 end subscript superscript 2 end superscript end root. square root of not stretchy sum A subscript 2 end subscript superscript 2 end superscript end root end fraction
    Planes are perpendicular if å A1 A2 = 0 and parallel if fraction numerator A subscript 1 end subscript over denominator A subscript 2 end subscript end fraction equals fraction numerator B subscript 1 end subscript over denominator B subscript 2 end subscript end fraction equals fraction numerator C subscript 1 end subscript over denominator C subscript 2 end subscript end fraction.
    C) Planes parallel to co – ordinate planes are x = l, y = l or z = l.
    Planes perpendicular to co – ordinate planes x = 0, y = 0, z = 0 are
    by + cz + d = 0 (x missing), ax + cz + d = 0
    (y missing), ax + by + d = 0 (z missing) Find the equation of the plane through the intersection of the planes x + 2y + 3z – 4 = 0 and 2x + y – z + 5 = 0 and perpendicular to the plane 5x + 3y + 6z + 8 = 0 is

    Maths-General
    parallel
    General
    Maths-

    stack lim with x blank rightwards arrow fraction numerator pi over denominator 2 end fraction below invisible function application open parentheses fraction numerator 1 plus c o s x over denominator 1 minus c o s x end fraction close parentheses to the power of s e c x end exponent equals

    stack lim with x blank rightwards arrow fraction numerator pi over denominator 2 end fraction below invisible function application open parentheses fraction numerator 1 plus c o s x over denominator 1 minus c o s x end fraction close parentheses to the power of s e c x end exponent equals

    Maths-General
    General
    Maths-

    The direction cosines of the line joining the points (4, 3, - 5) and (-2, 1, -8) are

    For such questions, we should know formula to find direction cosines.

    The direction cosines of the line joining the points (4, 3, - 5) and (-2, 1, -8) are

    Maths-General

    For such questions, we should know formula to find direction cosines.

    General
    Maths-

    The locus of x2 + y2 + z2 = 0 is

    For such questions, we have to be careful about points satisfying the equation.

    The locus of x2 + y2 + z2 = 0 is

    Maths-General

    For such questions, we have to be careful about points satisfying the equation.

    parallel
    General
    Maths-

    stack lim with x blank rightwards arrow infinity below invisible function application fraction numerator 1 over denominator square root of x to the power of 2 end exponent plus 4 x plus 7 end root minus x end fraction equals

    stack lim with x blank rightwards arrow infinity below invisible function application fraction numerator 1 over denominator square root of x to the power of 2 end exponent plus 4 x plus 7 end root minus x end fraction equals

    Maths-General
    General
    Maths-

    stack lim with x blank rightwards arrow 0 below invisible function application x c o s fraction numerator 1 over denominator x end fraction equals

    stack lim with x blank rightwards arrow 0 below invisible function application x c o s fraction numerator 1 over denominator x end fraction equals

    Maths-General
    General
    Maths-

    Let f (x) be a quadratic expression which is positive for all real x. If g(x) = f (x) + f ¢ (x) + f ¢¢ (x), then for any real x

    Let f (x) be a quadratic expression which is positive for all real x. If g(x) = f (x) + f ¢ (x) + f ¢¢ (x), then for any real x

    Maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.