Maths-
General
Easy

Question

If G left parenthesis x right parenthesis equals negative square root of 25 minus x squared end root then Lim subscript x not stretchy rightwards arrow 1 end subscript space fraction numerator G left parenthesis x right parenthesis minus G left parenthesis 1 right parenthesis over denominator x minus 1 end fraction has the value

  1. 1 over 24
  2. 1 fifth
  3. negative square root of 24
  4. none of these

hintHint:

We can apply L'Hopital's rule, also commonly spelled L'Hospital's rule, whenever direct substitution of a limit yields an indeterminate form. This means that the limit of a quotient of functions (i.e., an algebraic fraction) is equal to the limit of their derivatives.
In this question, we have to find value of If G left parenthesis x right parenthesis equals negative square root of 25 minus x squared end root then Lim subscript x not stretchy rightwards arrow 1 end subscript space fraction numerator G left parenthesis x right parenthesis minus G left parenthesis 1 right parenthesis over denominator x minus 1 end fraction .

The correct answer is:

none of these


    If G left parenthesis x right parenthesis equals negative square root of 25 minus x squared end root then Lim subscript x not stretchy rightwards arrow 1 end subscript space fraction numerator G left parenthesis x right parenthesis minus G left parenthesis 1 right parenthesis over denominator x minus 1 end fraction
    We first try substitution:
    Lim subscript x not stretchy rightwards arrow 1 end subscript space fraction numerator negative square root of 25 minus x squared end root plus square root of 24 over denominator x minus 1 end fraction space equals fraction numerator negative square root of 25 minus 1 squared end root plus square root of 24 over denominator 1 minus 1 end fraction space equals 0 over 0
    Since the limit is in the form 0 over 0, it is indeterminate—we don’t yet know what is it. We need to do some work to put it in a form where we can determine the limit.
    Lim subscript x not stretchy rightwards arrow 1 end subscript space fraction numerator negative square root of 25 minus x squared end root plus square root of 24 over denominator x minus 1 end fraction space space space space space left square bracket a p p l y space L apostrophe H o p i t a l apostrophe s space r u l e space semicolon fraction numerator d over denominator d x end fraction square root of a minus x to the power of 2 space end exponent end root space equals fraction numerator negative 2 x over denominator 2 square root of a minus x to the power of 2 space end exponent end root end fraction space right square bracket
Lim subscript x not stretchy rightwards arrow 1 end subscript space fraction numerator fraction numerator 2 x over denominator 2 square root of 25 minus x to the power of 2 space end exponent end root end fraction over denominator 1 end fraction space equals Lim subscript x not stretchy rightwards arrow 1 end subscript space fraction numerator x over denominator square root of 25 minus x to the power of 2 space end exponent end root end fraction space
Lim subscript x not stretchy rightwards arrow 1 end subscript space fraction numerator x over denominator square root of 25 minus x to the power of 2 space end exponent end root end fraction equals space fraction numerator 1 over denominator square root of 25 minus 1 to the power of 2 space end exponent end root end fraction space equals fraction numerator 1 over denominator square root of 24 end fraction

    We can only apply the L’Hospital’s rule if the direct substitution returns an indeterminate form, that means 0 over 0 or fraction numerator plus-or-minus infinity over denominator plus-or-minus infinity end fraction.

    Related Questions to study

    General
    maths-

    If f left parenthesis x right parenthesis equals square root of fraction numerator x minus sin space x over denominator x plus cos space x end fraction end root then L t f left parenthesis x right parenthesis is

    If f left parenthesis x right parenthesis equals square root of fraction numerator x minus sin space x over denominator x plus cos space x end fraction end root then L t f left parenthesis x right parenthesis is

    maths-General
    General
    physics-

    After the drop detaches its surface energy is

    After the drop detaches its surface energy is

    physics-General
    General
    physics-

    If ell equals 5 cross times 10 to the power of negative 4 end exponent straight m comma rho equals 10 cubed kgm to the power of negative 3 end exponent equals 10 ms to the power of negative 2 end exponent straight T equals 0.11 Nm to the power of negative 1 end exponent the......... radius of the drop when it detaches from the dropper is approximately

    If ell equals 5 cross times 10 to the power of negative 4 end exponent straight m comma rho equals 10 cubed kgm to the power of negative 3 end exponent equals 10 ms to the power of negative 2 end exponent straight T equals 0.11 Nm to the power of negative 1 end exponent the......... radius of the drop when it detaches from the dropper is approximately

    physics-General
    parallel
    General
    Maths-

    text  If  end text f left parenthesis 9 right parenthesis equals 9 comma f to the power of apostrophe left parenthesis 9 right parenthesis equals 4 comma text  then  end text space text  Lt end text subscript x not stretchy rightwards arrow 9 end subscript fraction numerator square root of f left parenthesis x right parenthesis end root minus 3 over denominator square root of x minus 3 end fraction text  equals  end text

    We can only apply the L’Hospital’s rule if the direct substitution returns an indeterminate form, that meansfraction numerator 0 over denominator 0 space end fraction space o r space fraction numerator plus-or-minus infinity over denominator plus-or-minus infinity end fraction.

    text  If  end text f left parenthesis 9 right parenthesis equals 9 comma f to the power of apostrophe left parenthesis 9 right parenthesis equals 4 comma text  then  end text space text  Lt end text subscript x not stretchy rightwards arrow 9 end subscript fraction numerator square root of f left parenthesis x right parenthesis end root minus 3 over denominator square root of x minus 3 end fraction text  equals  end text

    Maths-General

    We can only apply the L’Hospital’s rule if the direct substitution returns an indeterminate form, that meansfraction numerator 0 over denominator 0 space end fraction space o r space fraction numerator plus-or-minus infinity over denominator plus-or-minus infinity end fraction.

    General
    physics-

    If the radius of the opening of the dropper is r, the vertical force due to the surface tension on the drop of radius R (assuming r<<R) is:

    If the radius of the opening of the dropper is r, the vertical force due to the surface tension on the drop of radius R (assuming r<<R) is:

    physics-General
    General
    maths-

    L t subscript x not stretchy rightwards arrow negative straight infinity end subscript open square brackets fraction numerator x to the power of 4 sin space open parentheses 1 over x close parentheses plus x squared over denominator open parentheses 1 plus vertical line x vertical line cubed close parentheses end fraction close square brackets equals

    L t subscript x not stretchy rightwards arrow negative straight infinity end subscript open square brackets fraction numerator x to the power of 4 sin space open parentheses 1 over x close parentheses plus x squared over denominator open parentheses 1 plus vertical line x vertical line cubed close parentheses end fraction close square brackets equals

    maths-General
    parallel
    General
    Maths-

    Lt subscript x not stretchy rightwards arrow straight infinity end subscript open square brackets fraction numerator a to the power of 1 over x end exponent plus b to the power of 1 over x end exponent plus c to the power of 1 over x end exponent over denominator 3 end fraction close square brackets to the power of x where a,b,c are real and non-zero=

    The basic problem of this indeterminate form is to know from where f not stretchy left parenthesis x not stretchy right parenthesis tends to one (right or left) and what function reaches its limit more rapidly.

    Lt subscript x not stretchy rightwards arrow straight infinity end subscript open square brackets fraction numerator a to the power of 1 over x end exponent plus b to the power of 1 over x end exponent plus c to the power of 1 over x end exponent over denominator 3 end fraction close square brackets to the power of x where a,b,c are real and non-zero=

    Maths-General

    The basic problem of this indeterminate form is to know from where f not stretchy left parenthesis x not stretchy right parenthesis tends to one (right or left) and what function reaches its limit more rapidly.

    General
    physics-

    Which graph present the variation of surface tension with temperature over small temperature ranges for coater.

    Which graph present the variation of surface tension with temperature over small temperature ranges for coater.

    physics-General
    General
    Maths-

    Lt subscript x not stretchy rightwards arrow straight infinity end subscript space open parentheses fraction numerator x squared plus 5 x plus 3 over denominator x squared plus x plus 2 end fraction close parentheses to the power of x equals

    The basic problem of this indeterminate form is to know from where f not stretchy left parenthesis x not stretchy right parenthesis tends to one (right or left) and what function reaches its limit more rapidly.

    Lt subscript x not stretchy rightwards arrow straight infinity end subscript space open parentheses fraction numerator x squared plus 5 x plus 3 over denominator x squared plus x plus 2 end fraction close parentheses to the power of x equals

    Maths-General

    The basic problem of this indeterminate form is to know from where f not stretchy left parenthesis x not stretchy right parenthesis tends to one (right or left) and what function reaches its limit more rapidly.

    parallel
    General
    physics-

    A soap bubble is blown with the help of a mechanical pump at the mouth-of a tube the pump produces a certain increase per minute in the volume of the bubble irrespective of its internal pressure the graph between the pressure inside the soap bubble and time t will be

    A soap bubble is blown with the help of a mechanical pump at the mouth-of a tube the pump produces a certain increase per minute in the volume of the bubble irrespective of its internal pressure the graph between the pressure inside the soap bubble and time t will be

    physics-General
    General
    Maths-

    Lt subscript x not stretchy rightwards arrow straight infinity end subscript open parentheses fraction numerator x plus 6 over denominator x plus 1 end fraction close parentheses to the power of x plus 1 end exponent

    The basic problem of this indeterminate form is to know from where f not stretchy left parenthesis x not stretchy right parenthesis tends to one (right or left) and what function reaches its limit more rapidly.

    Lt subscript x not stretchy rightwards arrow straight infinity end subscript open parentheses fraction numerator x plus 6 over denominator x plus 1 end fraction close parentheses to the power of x plus 1 end exponent

    Maths-General

    The basic problem of this indeterminate form is to know from where f not stretchy left parenthesis x not stretchy right parenthesis tends to one (right or left) and what function reaches its limit more rapidly.

    General
    Maths-

    text  Lt  end text subscript x not stretchy rightwards arrow straight infinity end subscript open parentheses fraction numerator x plus 5 over denominator x plus 2 end fraction close parentheses to the power of x plus 2 end exponent equals

    The basic problem of this indeterminate form is to know from where f not stretchy left parenthesis x not stretchy right parenthesis tends to one (right or left) and what function reaches its limit more rapidly.

    text  Lt  end text subscript x not stretchy rightwards arrow straight infinity end subscript open parentheses fraction numerator x plus 5 over denominator x plus 2 end fraction close parentheses to the power of x plus 2 end exponent equals

    Maths-General

    The basic problem of this indeterminate form is to know from where f not stretchy left parenthesis x not stretchy right parenthesis tends to one (right or left) and what function reaches its limit more rapidly.

    parallel
    General
    Maths-

    Lt subscript x not stretchy rightwards arrow straight infinity end subscript space open parentheses fraction numerator x plus a over denominator x plus b end fraction close parentheses to the power of x plus b end exponent equals

    The basic problem of this indeterminate form is to know from where f not stretchy left parenthesis x not stretchy right parenthesis tends to one (right or left) and what function reaches its limit more rapidly.

    Lt subscript x not stretchy rightwards arrow straight infinity end subscript space open parentheses fraction numerator x plus a over denominator x plus b end fraction close parentheses to the power of x plus b end exponent equals

    Maths-General

    The basic problem of this indeterminate form is to know from where f not stretchy left parenthesis x not stretchy right parenthesis tends to one (right or left) and what function reaches its limit more rapidly.

    General
    maths-

    L t subscript x not stretchy rightwards arrow 0 end subscript fraction numerator e to the power of x minus e to the power of in space x end exponent over denominator 2 left parenthesis x minus sin space x right parenthesis end fraction equals

    L t subscript x not stretchy rightwards arrow 0 end subscript fraction numerator e to the power of x minus e to the power of in space x end exponent over denominator 2 left parenthesis x minus sin space x right parenthesis end fraction equals

    maths-General
    General
    Maths-

    L t subscript x not stretchy rightwards arrow 0 end subscript fraction numerator open parentheses 1 minus e to the power of x close parentheses sin begin display style space end style x over denominator x squared plus x cubed end fraction equals

    L t subscript x not stretchy rightwards arrow 0 end subscript fraction numerator open parentheses 1 minus e to the power of x close parentheses sin begin display style space end style x over denominator x squared plus x cubed end fraction equals

    Maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.