Maths-
General
Easy

Question

L t subscript x not stretchy rightwards arrow negative straight infinity end subscript open square brackets fraction numerator x to the power of 4 sin space open parentheses 1 over x close parentheses plus x squared over denominator open parentheses 1 plus vertical line x vertical line cubed close parentheses end fraction close square brackets equals

  1. 1
  2. -1
  3. 0
  4. negative straight infinity

The correct answer is: -1

Related Questions to study

General
Maths-

Lt subscript x not stretchy rightwards arrow straight infinity end subscript open square brackets fraction numerator a to the power of 1 over x end exponent plus b to the power of 1 over x end exponent plus c to the power of 1 over x end exponent over denominator 3 end fraction close square brackets to the power of x where a,b,c are real and non-zero=

The basic problem of this indeterminate form is to know from where f not stretchy left parenthesis x not stretchy right parenthesis tends to one (right or left) and what function reaches its limit more rapidly.

Lt subscript x not stretchy rightwards arrow straight infinity end subscript open square brackets fraction numerator a to the power of 1 over x end exponent plus b to the power of 1 over x end exponent plus c to the power of 1 over x end exponent over denominator 3 end fraction close square brackets to the power of x where a,b,c are real and non-zero=

Maths-General

The basic problem of this indeterminate form is to know from where f not stretchy left parenthesis x not stretchy right parenthesis tends to one (right or left) and what function reaches its limit more rapidly.

General
physics-

Which graph present the variation of surface tension with temperature over small temperature ranges for coater.

Which graph present the variation of surface tension with temperature over small temperature ranges for coater.

physics-General
General
Maths-

Lt subscript x not stretchy rightwards arrow straight infinity end subscript space open parentheses fraction numerator x squared plus 5 x plus 3 over denominator x squared plus x plus 2 end fraction close parentheses to the power of x equals

The basic problem of this indeterminate form is to know from where f not stretchy left parenthesis x not stretchy right parenthesis tends to one (right or left) and what function reaches its limit more rapidly.

Lt subscript x not stretchy rightwards arrow straight infinity end subscript space open parentheses fraction numerator x squared plus 5 x plus 3 over denominator x squared plus x plus 2 end fraction close parentheses to the power of x equals

Maths-General

The basic problem of this indeterminate form is to know from where f not stretchy left parenthesis x not stretchy right parenthesis tends to one (right or left) and what function reaches its limit more rapidly.

parallel
General
physics-

A soap bubble is blown with the help of a mechanical pump at the mouth-of a tube the pump produces a certain increase per minute in the volume of the bubble irrespective of its internal pressure the graph between the pressure inside the soap bubble and time t will be

A soap bubble is blown with the help of a mechanical pump at the mouth-of a tube the pump produces a certain increase per minute in the volume of the bubble irrespective of its internal pressure the graph between the pressure inside the soap bubble and time t will be

physics-General
General
Maths-

Lt subscript x not stretchy rightwards arrow straight infinity end subscript open parentheses fraction numerator x plus 6 over denominator x plus 1 end fraction close parentheses to the power of x plus 1 end exponent

The basic problem of this indeterminate form is to know from where f not stretchy left parenthesis x not stretchy right parenthesis tends to one (right or left) and what function reaches its limit more rapidly.

Lt subscript x not stretchy rightwards arrow straight infinity end subscript open parentheses fraction numerator x plus 6 over denominator x plus 1 end fraction close parentheses to the power of x plus 1 end exponent

Maths-General

The basic problem of this indeterminate form is to know from where f not stretchy left parenthesis x not stretchy right parenthesis tends to one (right or left) and what function reaches its limit more rapidly.

General
Maths-

text  Lt  end text subscript x not stretchy rightwards arrow straight infinity end subscript open parentheses fraction numerator x plus 5 over denominator x plus 2 end fraction close parentheses to the power of x plus 2 end exponent equals

The basic problem of this indeterminate form is to know from where f not stretchy left parenthesis x not stretchy right parenthesis tends to one (right or left) and what function reaches its limit more rapidly.

text  Lt  end text subscript x not stretchy rightwards arrow straight infinity end subscript open parentheses fraction numerator x plus 5 over denominator x plus 2 end fraction close parentheses to the power of x plus 2 end exponent equals

Maths-General

The basic problem of this indeterminate form is to know from where f not stretchy left parenthesis x not stretchy right parenthesis tends to one (right or left) and what function reaches its limit more rapidly.

parallel
General
Maths-

Lt subscript x not stretchy rightwards arrow straight infinity end subscript space open parentheses fraction numerator x plus a over denominator x plus b end fraction close parentheses to the power of x plus b end exponent equals

The basic problem of this indeterminate form is to know from where f not stretchy left parenthesis x not stretchy right parenthesis tends to one (right or left) and what function reaches its limit more rapidly.

Lt subscript x not stretchy rightwards arrow straight infinity end subscript space open parentheses fraction numerator x plus a over denominator x plus b end fraction close parentheses to the power of x plus b end exponent equals

Maths-General

The basic problem of this indeterminate form is to know from where f not stretchy left parenthesis x not stretchy right parenthesis tends to one (right or left) and what function reaches its limit more rapidly.

General
maths-

L t subscript x not stretchy rightwards arrow 0 end subscript fraction numerator e to the power of x minus e to the power of in space x end exponent over denominator 2 left parenthesis x minus sin space x right parenthesis end fraction equals

L t subscript x not stretchy rightwards arrow 0 end subscript fraction numerator e to the power of x minus e to the power of in space x end exponent over denominator 2 left parenthesis x minus sin space x right parenthesis end fraction equals

maths-General
General
Maths-

L t subscript x not stretchy rightwards arrow 0 end subscript fraction numerator open parentheses 1 minus e to the power of x close parentheses sin begin display style space end style x over denominator x squared plus x cubed end fraction equals

L t subscript x not stretchy rightwards arrow 0 end subscript fraction numerator open parentheses 1 minus e to the power of x close parentheses sin begin display style space end style x over denominator x squared plus x cubed end fraction equals

Maths-General
parallel
General
Maths-

text  If  end text a greater than 0 text  and end text L subscript x not stretchy rightwards arrow a end subscript fraction numerator a to the power of a minus x to the power of a over denominator x to the power of a minus a to the power of a end fraction equals negative 1 text , then  end text bold a equals

We can only apply the L’Hospital’s rule if the direct substitution returns an indeterminate form, that means 0 over 0 or  fraction numerator plus-or-minus infinity over denominator plus-or-minus infinity end fraction.

text  If  end text a greater than 0 text  and end text L subscript x not stretchy rightwards arrow a end subscript fraction numerator a to the power of a minus x to the power of a over denominator x to the power of a minus a to the power of a end fraction equals negative 1 text , then  end text bold a equals

Maths-General

We can only apply the L’Hospital’s rule if the direct substitution returns an indeterminate form, that means 0 over 0 or  fraction numerator plus-or-minus infinity over denominator plus-or-minus infinity end fraction.

General
Maths-

L subscript x not stretchy rightwards arrow 0 end subscript fraction numerator x left parenthesis 1 plus a cos space x right parenthesis minus b sin space x over denominator x cubed end fraction equals 1 text  then  end text straight a equals comma straight b equals

We can only apply the L’Hospital’s rule if the direct substitution returns an indeterminate form, that means 0 over 0 or fraction numerator plus-or-minus infinity over denominator plus-or-minus infinity end fraction.

L subscript x not stretchy rightwards arrow 0 end subscript fraction numerator x left parenthesis 1 plus a cos space x right parenthesis minus b sin space x over denominator x cubed end fraction equals 1 text  then  end text straight a equals comma straight b equals

Maths-General

We can only apply the L’Hospital’s rule if the direct substitution returns an indeterminate form, that means 0 over 0 or fraction numerator plus-or-minus infinity over denominator plus-or-minus infinity end fraction.

General
physics-

The correct relation is.

The correct relation is.

physics-General
parallel
General
physics-

A vessel whose bottom has round holes with diameter of 0.1 mm is filled with water. The maximum height to which the water can be filled without leakage is
(S.T. of water == fraction numerator 75 text  dyne  end text over denominator cm end fraction straight g equals 1000 straight m over straight s squared times)

A vessel whose bottom has round holes with diameter of 0.1 mm is filled with water. The maximum height to which the water can be filled without leakage is
(S.T. of water == fraction numerator 75 text  dyne  end text over denominator cm end fraction straight g equals 1000 straight m over straight s squared times)

physics-General
General
Maths-

L t subscript x not stretchy rightwards arrow 0 end subscript fraction numerator x 10 to the power of x minus x over denominator 1 minus cos space x end fraction equals

We can only apply the L’Hospital’s rule if the direct substitution returns an indeterminate form, that means 0 over 0 or fraction numerator plus-or-minus infinity over denominator plus-or-minus infinity end fraction.

L t subscript x not stretchy rightwards arrow 0 end subscript fraction numerator x 10 to the power of x minus x over denominator 1 minus cos space x end fraction equals

Maths-General

We can only apply the L’Hospital’s rule if the direct substitution returns an indeterminate form, that means 0 over 0 or fraction numerator plus-or-minus infinity over denominator plus-or-minus infinity end fraction.

General
Maths-

L t subscript n not stretchy rightwards arrow straight infinity end subscript fraction numerator n open parentheses 1 cubed plus 2 cubed plus midline horizontal ellipsis times plus n cubed close parentheses squared over denominator open parentheses 1 squared plus 2 squared plus midline horizontal ellipsis plus n squared close parentheses cubed end fraction equals

In general, we say that f(x) tends to a real limit l as x tends to infinity if, however small a distance we choose, f(x) gets closer than that distance to l and stays closer as x increases. f(x) = infinity

L t subscript n not stretchy rightwards arrow straight infinity end subscript fraction numerator n open parentheses 1 cubed plus 2 cubed plus midline horizontal ellipsis times plus n cubed close parentheses squared over denominator open parentheses 1 squared plus 2 squared plus midline horizontal ellipsis plus n squared close parentheses cubed end fraction equals

Maths-General

In general, we say that f(x) tends to a real limit l as x tends to infinity if, however small a distance we choose, f(x) gets closer than that distance to l and stays closer as x increases. f(x) = infinity

parallel

card img

With Turito Academy.

card img

With Turito Foundation.

card img

Get an Expert Advice From Turito.

Turito Academy

card img

With Turito Academy.

Test Prep

card img

With Turito Foundation.