Maths-
General
Easy

Question

Let f left parenthesis x right parenthesis equals fraction numerator log invisible function application left parenthesis 1 plus x plus x to the power of 2 end exponent right parenthesis plus log invisible function application left parenthesis 1 minus x plus x to the power of 2 end exponent right parenthesis over denominator sec invisible function application x minus cos invisible function application x end fraction, x not equal to 1. The value of f(0) so that f is continuous at x = 0 is

  1. 1    
  2. 2    
  3. 4    
  4. none of these    

The correct answer is: 1


    f(0) = stack l i m with x rightwards arrow 0 below f left parenthesis x right parenthesis
    equals stack l i m with x rightwards arrow 0 below fraction numerator log invisible function application left square bracket left parenthesis 1 plus x plus x to the power of 2 end exponent right parenthesis plus log invisible function application left parenthesis 1 minus x plus x to the power of 2 end exponent right parenthesis over denominator sec invisible function application x minus cos invisible function application x end fraction equals stack l i m with x rightwards arrow 0 below fraction numerator log invisible function application left parenthesis left parenthesis 1 plus x to the power of 2 end exponent right parenthesis to the power of 2 end exponent minus x to the power of 2 end exponent right parenthesis over denominator 1 minus cos to the power of 2 end exponent invisible function application x end fraction. cos invisible function application x
    equals stack l i m with x rightwards arrow 0 below fraction numerator log invisible function application left parenthesis 1 plus x to the power of 4 end exponent plus x to the power of 2 end exponent right parenthesis over denominator x to the power of 2 end exponent. fraction numerator sin to the power of 2 end exponent invisible function application x over denominator x to the power of 2 end exponent end fraction end fraction stack l i m with x rightwards arrow 0 below cos invisible function application x equals stack l i m with x rightwards arrow 0 below fraction numerator log invisible function application left square bracket 1 plus left parenthesis x to the power of 2 end exponent plus x to the power of 4 end exponent right parenthesis right square bracket over denominator x to the power of 2 end exponent end fraction
    equals stack l i m with x rightwards arrow 0 below fraction numerator log invisible function application left parenthesis 1 plus left parenthesis x to the power of 2 end exponent plus x to the power of 4 end exponent right parenthesis right square bracket over denominator x to the power of 2 end exponent plus x to the power of 4 end exponent end fraction equals 1

    Related Questions to study

    General
    Maths-

    stack l i m with x rightwards arrow 1 below fraction numerator left parenthesis 1 minus x right parenthesis left parenthesis 1 minus x to the power of 2 end exponent right parenthesis... left parenthesis 1 minus x to the power of 2 n end exponent right parenthesis over denominator left square bracket left parenthesis 1 minus x right parenthesis left parenthesis 1 minus x to the power of 2 end exponent right parenthesis... left parenthesis 1 minus x to the power of n end exponent right parenthesis right square bracket to the power of 2 end exponent end fraction is

    stack l i m with x rightwards arrow 1 below fraction numerator left parenthesis 1 minus x right parenthesis left parenthesis 1 minus x to the power of 2 end exponent right parenthesis... left parenthesis 1 minus x to the power of 2 n end exponent right parenthesis over denominator left square bracket left parenthesis 1 minus x right parenthesis left parenthesis 1 minus x to the power of 2 end exponent right parenthesis... left parenthesis 1 minus x to the power of n end exponent right parenthesis right square bracket to the power of 2 end exponent end fraction is

    Maths-General
    General
    Maths-

    A function f(x) is defined as below f left parenthesis x right parenthesis equals fraction numerator cos invisible function application left parenthesis sin invisible function application x right parenthesis minus cos invisible function application x over denominator x to the power of 2 end exponent end fraction comma x not equal to 0, f(0) = a, f(x) is continuous at x = 0 if a equals

    A function f(x) is defined as below f left parenthesis x right parenthesis equals fraction numerator cos invisible function application left parenthesis sin invisible function application x right parenthesis minus cos invisible function application x over denominator x to the power of 2 end exponent end fraction comma x not equal to 0, f(0) = a, f(x) is continuous at x = 0 if a equals

    Maths-General
    General
    Maths-

    If A and B are two independent events, then A and stack B with ̄ on top are

    If A and B are two independent events, then A and stack B with ̄ on top are

    Maths-General
    parallel
    General
    Maths-

    Let a comma b and c be non-zero vectors such that left parenthesis a cross times b right parenthesis cross times c equals fraction numerator 1 over denominator 3 end fraction vertical line b vertical line vertical line c vertical line a. If q is the acute angle between the vectors b and c, then sin invisible function application theta equals

    Let a comma b and c be non-zero vectors such that left parenthesis a cross times b right parenthesis cross times c equals fraction numerator 1 over denominator 3 end fraction vertical line b vertical line vertical line c vertical line a. If q is the acute angle between the vectors b and c, then sin invisible function application theta equals

    Maths-General
    General
    Maths-

    If vertical line a cross times b vertical line equals 4 and vertical line a. b vertical line equals 2, then vertical line a vertical line to the power of 2 end exponent vertical line b vertical line to the power of 2 end exponent equals

    If vertical line a cross times b vertical line equals 4 and vertical line a. b vertical line equals 2, then vertical line a vertical line to the power of 2 end exponent vertical line b vertical line to the power of 2 end exponent equals

    Maths-General
    General
    Maths-

    Let u = i + j, v = i – j and w = i + 2j + 3k. If n is a unit vector such that u.n = 0 and v.n = 0 then vertical line w. n vertical line is equal to

    Let u = i + j, v = i – j and w = i + 2j + 3k. If n is a unit vector such that u.n = 0 and v.n = 0 then vertical line w. n vertical line is equal to

    Maths-General
    parallel
    General
    Maths-

    Angle between the line r equals left parenthesis i plus 2 j minus k right parenthesis plus lambda rightwards arrow over short leftwards arrow left parenthesis i minus j plus k right parenthesis and the normal to the plane r. left parenthesis 2 i minus j plus k right parenthesis equals 4 is

    Angle between the line r equals left parenthesis i plus 2 j minus k right parenthesis plus lambda rightwards arrow over short leftwards arrow left parenthesis i minus j plus k right parenthesis and the normal to the plane r. left parenthesis 2 i minus j plus k right parenthesis equals 4 is

    Maths-General
    General
    Maths-

    left square bracket left parenthesis a cross times b right parenthesis cross times left parenthesis b cross times c right parenthesis left parenthesis b cross times c right parenthesis cross times left parenthesis c cross times a right parenthesis left parenthesis c cross times a right parenthesis cross times left parenthesis a cross times b right parenthesis right square bracket equals

    left square bracket left parenthesis a cross times b right parenthesis cross times left parenthesis b cross times c right parenthesis left parenthesis b cross times c right parenthesis cross times left parenthesis c cross times a right parenthesis left parenthesis c cross times a right parenthesis cross times left parenthesis a cross times b right parenthesis right square bracket equals

    Maths-General
    General
    Maths-

    If u equals 2 i plus 2 j minus kand v equals 6 i minus 3 j plus 2 k comma then a unit vector perpendicular to both u and v is

    If u equals 2 i plus 2 j minus kand v equals 6 i minus 3 j plus 2 k comma then a unit vector perpendicular to both u and v is

    Maths-General
    parallel
    General
    Maths-

    The equation of plane passing through a point A left parenthesis 2 comma negative 1 , 3 right parenthesis and parallel to the vectors a equals left parenthesis 3 , 0 comma negative 1 right parenthesis and b equals left parenthesis negative 3 , 2 comma 2 right parenthesis is

    The equation of plane passing through a point A left parenthesis 2 comma negative 1 , 3 right parenthesis and parallel to the vectors a equals left parenthesis 3 , 0 comma negative 1 right parenthesis and b equals left parenthesis negative 3 , 2 comma 2 right parenthesis is

    Maths-General
    General
    Maths-

    The equation of the plane passing through the points left parenthesis negative 1 comma negative 2 , 0 right parenthesis comma left parenthesis 2 , 3 comma 5 right parenthesis and parallel to the line
    r equals negative 3 j plus k plus lambda left parenthesis 2 i plus 5 j minus k right parenthesis is

    The equation of the plane passing through the points left parenthesis negative 1 comma negative 2 , 0 right parenthesis comma left parenthesis 2 , 3 comma 5 right parenthesis and parallel to the line
    r equals negative 3 j plus k plus lambda left parenthesis 2 i plus 5 j minus k right parenthesis is

    Maths-General
    General
    Maths-

    The distance from the point negative i plus 2 j plus 6 k to the straight line through the point (2, 3, –4) and parallel to the vector 6 i plus 3 j minus 4 k is

    The distance from the point negative i plus 2 j plus 6 k to the straight line through the point (2, 3, –4) and parallel to the vector 6 i plus 3 j minus 4 k is

    Maths-General
    parallel
    General
    Maths-

    The length of the perpendicular from the origin to the plane passing through three non-collinear points a comma b comma c is

    The length of the perpendicular from the origin to the plane passing through three non-collinear points a comma b comma c is

    Maths-General
    General
    Maths-

    A vector n of magnitude 8 units is inclined to x-axis at 4 5 to the power of o end exponent, y-axis at 6 0 to the power of o end exponent and an acute angle with z-axis. If a plane passes through a point left parenthesis square root of 2 comma negative 1 , 1 right parenthesis and is normal to n, then its equation in vector form is

    A vector n of magnitude 8 units is inclined to x-axis at 4 5 to the power of o end exponent, y-axis at 6 0 to the power of o end exponent and an acute angle with z-axis. If a plane passes through a point left parenthesis square root of 2 comma negative 1 , 1 right parenthesis and is normal to n, then its equation in vector form is

    Maths-General
    General
    Maths-

    fraction numerator text d end text over denominator text dx end text end fraction open square brackets s i n open parentheses l o g open parentheses s i n e to the power of x to the power of 2 end exponent end exponent close parentheses close parentheses close square brackets =

    fraction numerator text d end text over denominator text dx end text end fraction open square brackets s i n open parentheses l o g open parentheses s i n e to the power of x to the power of 2 end exponent end exponent close parentheses close parentheses close square brackets =

    Maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.