Maths-
General
Easy

Question

Lt subscript x not stretchy rightwards arrow 0 end subscript 2 over x log space left parenthesis 1 plus x right parenthesis

  1. 2
  2. 1
  3. 0
  4. log x

hintHint:

We can apply L'Hopital's rule, also commonly spelled L'Hospital's rule, whenever direct substitution of a limit yields an indeterminate form. This means that the limit of a quotient of functions (i.e., an algebraic fraction) is equal to the limit of their derivatives.
In this question, we have to find value of Lt subscript x not stretchy rightwards arrow 0 end subscript 2 over x log space left parenthesis 1 plus x right parenthesis.

The correct answer is: 2


    Lt subscript x not stretchy rightwards arrow 0 end subscript 2 over x log space left parenthesis 1 plus x right parenthesis
    We first try substitution:
    Lt subscript x not stretchy rightwards arrow 0 end subscript 2 over x log space left parenthesis 1 plus x right parenthesis = Lt subscript x not stretchy rightwards arrow 0 end subscript fraction numerator 2 log space left parenthesis 1 plus 0 right parenthesis over denominator 0 end fraction space equals space 0 over 0
    Since the limit is in the form 0 over 0, it is indeterminate—we don’t yet know what is it. We need to do some work to put it in a form where we can determine the limit.
    Lt subscript x not stretchy rightwards arrow 0 end subscript fraction numerator 2 log space left parenthesis 1 plus x right parenthesis over denominator x end fraction = 2 x Lt subscript x not stretchy rightwards arrow 0 end subscript fraction numerator log space left parenthesis 1 plus x right parenthesis over denominator x end fraction       ( L'Hopital's Rule for zero over zero;  Lt subscript x not stretchy rightwards arrow 0 end subscript fraction numerator f space left parenthesis x right parenthesis over denominator g left parenthesis x right parenthesis end fraction space equals space Lt subscript x not stretchy rightwards arrow 0 end subscript fraction numerator f space apostrophe left parenthesis x right parenthesis over denominator g apostrophe left parenthesis x right parenthesis end fraction )
    Differentiate the above form
    space 2 cross times Lt subscript x not stretchy rightwards arrow 0 end subscript fraction numerator 1 over denominator left parenthesis 1 plus x right parenthesis end fraction
    On substituting, We get
    space 2 cross times Lt subscript x not stretchy rightwards arrow 0 end subscript fraction numerator 1 over denominator left parenthesis 1 plus x right parenthesis end fraction = 2

    We can only apply the L’Hospital’s rule if the direct substitution returns an indeterminate form, that means fraction numerator 0 over denominator 0 space end fraction space o r space fraction numerator plus-or-minus infinity over denominator plus-or-minus infinity end fraction.

    Related Questions to study

    General
    maths-

    T a n invisible function application left parenthesis A minus B right parenthesis plus T a n invisible function application left parenthesis B minus C right parenthesis plus T a n invisible function application left parenthesis C minus A right parenthesis equals

    T a n invisible function application left parenthesis A minus B right parenthesis plus T a n invisible function application left parenthesis B minus C right parenthesis plus T a n invisible function application left parenthesis C minus A right parenthesis equals

    maths-General
    General
    maths-

    If Tan invisible function application 40 to the power of ring operator plus 2 Tan invisible function application 10 to the power of ring operator equals Cot invisible function application x then x=

    If Tan invisible function application 40 to the power of ring operator plus 2 Tan invisible function application 10 to the power of ring operator equals Cot invisible function application x then x=

    maths-General
    General
    maths-

    If A, B, C are acute angles, T a n invisible function application A equals 1 divided by 2, T a n invisible function application B equals 1 divided by 5, Tan invisible function application C equals 1 divided by 8 then A+B+C=

    If A, B, C are acute angles, T a n invisible function application A equals 1 divided by 2, T a n invisible function application B equals 1 divided by 5, Tan invisible function application C equals 1 divided by 8 then A+B+C=

    maths-General
    parallel
    General
    maths-

    If 0 less than alpha comma beta less than fraction numerator pi over denominator 4 end fraction comma C o s invisible function application left parenthesis alpha plus beta right parenthesis equals fraction numerator 4 over denominator 5 end fraction comma S i n invisible function application left parenthesis alpha minus beta right parenthesis equals fraction numerator 5 over denominator 13 end fraction then Tan invisible function application 2 alpha=

    If 0 less than alpha comma beta less than fraction numerator pi over denominator 4 end fraction comma C o s invisible function application left parenthesis alpha plus beta right parenthesis equals fraction numerator 4 over denominator 5 end fraction comma S i n invisible function application left parenthesis alpha minus beta right parenthesis equals fraction numerator 5 over denominator 13 end fraction then Tan invisible function application 2 alpha=

    maths-General
    General
    maths-

    If C o s invisible function application alpha equals fraction numerator negative 12 over denominator 13 end fraction comma C o t invisible function application beta equals fraction numerator 24 over denominator 7 end fraction comma 90 to the power of ring operator end exponent less than alpha less than 180 to the power of ring operator end exponent and 180 to the power of ring operator end exponent less than beta less than 270 to the power of ring operator end exponent then the quardrant in which alpha plus beta lies

    If C o s invisible function application alpha equals fraction numerator negative 12 over denominator 13 end fraction comma C o t invisible function application beta equals fraction numerator 24 over denominator 7 end fraction comma 90 to the power of ring operator end exponent less than alpha less than 180 to the power of ring operator end exponent and 180 to the power of ring operator end exponent less than beta less than 270 to the power of ring operator end exponent then the quardrant in which alpha plus beta lies

    maths-General
    General
    maths-

    Tan invisible function application 20 to the power of ring operator plus 2 Tan invisible function application 50 to the power of ring operator equals

    Tan invisible function application 20 to the power of ring operator plus 2 Tan invisible function application 50 to the power of ring operator equals

    maths-General
    parallel
    General
    maths-

    Tan invisible function application 20 to the power of ring operator plus Tan invisible function application 25 to the power of ring operator plus Tan invisible function application 20 to the power of ring operator Tan invisible function application 25 to the power of ring operator equals

    Tan invisible function application 20 to the power of ring operator plus Tan invisible function application 25 to the power of ring operator plus Tan invisible function application 20 to the power of ring operator Tan invisible function application 25 to the power of ring operator equals

    maths-General
    General
    maths-

    If Tan invisible function application 22 to the power of ring operator plus Tan invisible function application 38 to the power of ring operator minus square root of 3 equals k Tan invisible function application 22 to the power of ring operator Tan invisible function application 38 to the power of ring operator  then k=

    If Tan invisible function application 22 to the power of ring operator plus Tan invisible function application 38 to the power of ring operator minus square root of 3 equals k Tan invisible function application 22 to the power of ring operator Tan invisible function application 38 to the power of ring operator  then k=

    maths-General
    General
    maths-

    Lt subscript x not stretchy rightwards arrow 0 end subscript space open parentheses 1 plus fraction numerator 2 x over denominator 3 end fraction close parentheses to the power of 1 over x end exponent

    Lt subscript x not stretchy rightwards arrow 0 end subscript space open parentheses 1 plus fraction numerator 2 x over denominator 3 end fraction close parentheses to the power of 1 over x end exponent

    maths-General
    parallel
    General
    physics-

    Which one of the following quantities does not have unit of force per unit area.

    Which one of the following quantities does not have unit of force per unit area.

    physics-General
    General
    maths-

    If f left parenthesis x right parenthesis equals open curly brackets table row cell x to the power of alpha end exponent l o g invisible function application x comma end cell cell x greater than 0 end cell row cell 0 comma end cell cell x equals 0 end cell end table close and Rolle's theorem is applicable to f(x) for x element of left square bracket 0 , 1 right square bracket then alpha is equal to

    If f left parenthesis x right parenthesis equals open curly brackets table row cell x to the power of alpha end exponent l o g invisible function application x comma end cell cell x greater than 0 end cell row cell 0 comma end cell cell x equals 0 end cell end table close and Rolle's theorem is applicable to f(x) for x element of left square bracket 0 , 1 right square bracket then alpha is equal to

    maths-General
    General
    maths-

    Given n is a positive integer for the function f left parenthesis x right parenthesis equals 5 x left parenthesis x minus 2 right parenthesis to the power of n comma x element of left square bracket 0 comma 2 right square bracket, . By Rolle's theorem the value of c is 1/5 then n is equal to

    Given n is a positive integer for the function f left parenthesis x right parenthesis equals 5 x left parenthesis x minus 2 right parenthesis to the power of n comma x element of left square bracket 0 comma 2 right square bracket, . By Rolle's theorem the value of c is 1/5 then n is equal to

    maths-General
    parallel
    General
    physics-

    A medium shows relation between i and r as shown. If speed of light in the medium is nc then value of n is

    A medium shows relation between i and r as shown. If speed of light in the medium is nc then value of n is

    physics-General
    General
    physics-

    The graph between sine of angle of refraction (sin r) in medium 2 and sine of angle of incidence (sin i) in medium 1 indicates that open parentheses t a n invisible function application 36 to the power of ring operator end exponent almost equal to fraction numerator 3 over denominator 4 end fraction close parentheses

    The graph between sine of angle of refraction (sin r) in medium 2 and sine of angle of incidence (sin i) in medium 1 indicates that open parentheses t a n invisible function application 36 to the power of ring operator end exponent almost equal to fraction numerator 3 over denominator 4 end fraction close parentheses

    physics-General
    General
    physics-

    For a small angled prism, angle of prism A, the angle of minimum deviation left parenthesis delta right parenthesis varies with the refractive index of the prism as shown in the graph

    For a small angled prism, angle of prism A, the angle of minimum deviation left parenthesis delta right parenthesis varies with the refractive index of the prism as shown in the graph

    physics-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.