Maths-
General
Easy

Question

The cartesian equation of r equals a s i n space 2 theta is

  1. open parentheses x to the power of 2 end exponent plus y to the power of 2 end exponent close parentheses to the power of 3 end exponent equals 4 a to the power of 2 end exponent x to the power of 2 end exponent y to the power of 2 end exponent    
  2. open parentheses x to the power of 2 end exponent minus y to the power of 2 end exponent close parentheses to the power of 3 end exponent equals 4 a to the power of 2 end exponent x to the power of 2 end exponent y to the power of 2 end exponent    
  3. open parentheses x to the power of 2 end exponent plus y to the power of 2 end exponent close parentheses to the power of 3 end exponent equals 2 a to the power of 2 end exponent x to the power of 2 end exponent y to the power of 2 end exponent    
  4. open parentheses x to the power of 2 end exponent minus y to the power of 2 end exponent close parentheses to the power of 3 end exponent equals 2 a to the power of 2 end exponent x to the power of 2 end exponent y to the power of 2 end exponent    

hintHint:

The term "polar coordinate system" refers to a two-dimensional coordinate system where each point's location on a plane is determined by its distance from a reference point and its angle with respect to a reference direction. Here we have to find the polar equation of r equals a s i n space 2 theta.

The correct answer is: open parentheses x to the power of 2 end exponent plus y to the power of 2 end exponent close parentheses to the power of 3 end exponent equals 4 a to the power of 2 end exponent x to the power of 2 end exponent y to the power of 2 end exponent




    Using the formula, we may generate an endless number of polar coordinates for a single coordinate point.
    (r, +2n) or (-r, +(2n+1)) are possible formulas, where n is an integer.
    If measured in the opposite direction, the value of is positive.
    When calculated counterclockwise, the value of is negative.
    If laid off at the terminal side of, the value of r is positive.
    If r is terminated at the prolongation through the origin from the terminal side of, it has a negative value.
    The equation is given as
    r equals a sin space 2 theta
N o w space w e space k n o w space t h a t colon
sin space 2 theta equals 2 s i n theta cos theta
A p p l y i n g space t h i s comma space w e space g e t colon
r equals 2 a s i n theta cos theta
M u l t i p l y i n g space b y space r squared space o n space b o t h space s i d e s comma space w e space g e t colon
r cubed equals 2 a left parenthesis r s i n theta right parenthesis left parenthesis r cos theta right parenthesis
P u t t i n g space r cos theta equals x space a n d space space r s i n theta equals y comma space w e space g e t colon
r equals square root of x squared plus y squared end root
left parenthesis x squared plus y squared right parenthesis to the power of 3 divided by 2 end exponent equals 2 a y x space
S q u a r i n g space b o t h space s i d e s comma space w e space g e t colon
4 a squared x squared y squared equals left parenthesis x squared plus y squared right parenthesis cubed

    Here we used the concept of the polar coordinate system and also the trigonometric ratios to find the solution. So the equation is 4 a squared x squared y squared equals left parenthesis x squared plus y squared right parenthesis cubed.

    Related Questions to study

    General
    physics-

    Two tuning forks P and Q are vibrated together. The number of beats produced are represented by the straight line O A in the following graph. After loading Q with wax again these are vibrated together and the beats produced are represented by the line O B. If the frequency of P is 341 H z comma the frequency of Q will be

    Two tuning forks P and Q are vibrated together. The number of beats produced are represented by the straight line O A in the following graph. After loading Q with wax again these are vibrated together and the beats produced are represented by the line O B. If the frequency of P is 341 H z comma the frequency of Q will be

    physics-General
    General
    Maths-

    If a hyperbola passing through the origin has 3 x minus 4 y minus 1 equals 0 and 4 x minus 3 y minus 6 equals 0 as its asymptotes, then the equation of its tranvsverse and conjugate axes are

    Here we used the concept of polar coordinate system and also the trigonometric ratios to find the solution. T h e space e q u a t i o n space o f space t r a n s v e r s e space i s space x plus y minus 5 equals 0. space T h e space e q u a t i o n space o f space c o n j u g a t e space a x i s space i s space x minus y minus 1 equals 0.

    If a hyperbola passing through the origin has 3 x minus 4 y minus 1 equals 0 and 4 x minus 3 y minus 6 equals 0 as its asymptotes, then the equation of its tranvsverse and conjugate axes are

    Maths-General

    Here we used the concept of polar coordinate system and also the trigonometric ratios to find the solution. T h e space e q u a t i o n space o f space t r a n s v e r s e space i s space x plus y minus 5 equals 0. space T h e space e q u a t i o n space o f space c o n j u g a t e space a x i s space i s space x minus y minus 1 equals 0.

    General
    maths-

    Five distinct letters are to be transmitted through a communication channel. A total number of 15 blanks is to be inserted between the two letters with at least three between every two. The number of ways in which this can be done is -

    Five distinct letters are to be transmitted through a communication channel. A total number of 15 blanks is to be inserted between the two letters with at least three between every two. The number of ways in which this can be done is -

    maths-General
    parallel
    General
    maths-

    The number of ordered pairs (m, n), m, n element of {1, 2, … 100} such that 7m + 7n is divisible by 5 is -

    The number of ordered pairs (m, n), m, n element of {1, 2, … 100} such that 7m + 7n is divisible by 5 is -

    maths-General
    General
    maths-

    Consider the following statements:
    1. The number of ways of arranging m different things taken all at a time in which p less or equal than m particular things are never together is m! – (m – p + 1)! p!.
    2. A pack of 52 cards can be divided equally among four players in order in fraction numerator 52 factorial over denominator left parenthesis 13 factorial right parenthesis to the power of 4 end exponent end fractionways.
    Which of these is/are correct?

    Consider the following statements:
    1. The number of ways of arranging m different things taken all at a time in which p less or equal than m particular things are never together is m! – (m – p + 1)! p!.
    2. A pack of 52 cards can be divided equally among four players in order in fraction numerator 52 factorial over denominator left parenthesis 13 factorial right parenthesis to the power of 4 end exponent end fractionways.
    Which of these is/are correct?

    maths-General
    General
    maths-

    The total number of function ‘ƒ’ from the set {1, 2, 3} into the set {1, 2, 3, 4, 5} such that ƒ(i) less or equal than ƒ(j), straight for all i < j, is equal to-

    The total number of function ‘ƒ’ from the set {1, 2, 3} into the set {1, 2, 3, 4, 5} such that ƒ(i) less or equal than ƒ(j), straight for all i < j, is equal to-

    maths-General
    parallel
    General
    maths-

    The number of points in the Cartesian plane with integral co-ordinates satisfying the inequalities |x|  less or equal than k, |y| less or equal than k, |x – y| less or equal than k ; is-

    The number of points in the Cartesian plane with integral co-ordinates satisfying the inequalities |x|  less or equal than k, |y| less or equal than k, |x – y| less or equal than k ; is-

    maths-General
    General
    maths-

    The numbers of integers between 1 and 106 have the sum of their digit equal to K(where 0 < K < 18) is -

    The numbers of integers between 1 and 106 have the sum of their digit equal to K(where 0 < K < 18) is -

    maths-General
    General
    maths-

    The straight lines I1, I2, I3 are parallel and lie in the same plane. A total number of m points are taken on I1 ; n points on I2 , k points on I3. The maximum number of triangles formed with vertices at these points are -

    The straight lines I1, I2, I3 are parallel and lie in the same plane. A total number of m points are taken on I1 ; n points on I2 , k points on I3. The maximum number of triangles formed with vertices at these points are -

    maths-General
    parallel
    General
    Maths-

    If the line l x plus m y equals 1 is a normal to the hyperbola fraction numerator x to the power of 2 end exponent over denominator a to the power of 2 end exponent end fraction minus fraction numerator y to the power of 2 end exponent over denominator b to the power of 2 end exponent end fraction equals 1 then fraction numerator a to the power of 2 end exponent over denominator l to the power of 2 end exponent end fraction minus fraction numerator b to the power of 2 end exponent over denominator m to the power of 2 end exponent end fraction equals

    So here we understood the concept of hyperbola and the normal lines.In analytic geometry, a hyperbola is a conic section created when a plane meets a double right circular cone at an angle that overlaps both cone halves. So the value of a squared over l squared minus b squared over m squared equals left parenthesis a squared plus b squared right parenthesis squared.

    If the line l x plus m y equals 1 is a normal to the hyperbola fraction numerator x to the power of 2 end exponent over denominator a to the power of 2 end exponent end fraction minus fraction numerator y to the power of 2 end exponent over denominator b to the power of 2 end exponent end fraction equals 1 then fraction numerator a to the power of 2 end exponent over denominator l to the power of 2 end exponent end fraction minus fraction numerator b to the power of 2 end exponent over denominator m to the power of 2 end exponent end fraction equals

    Maths-General

    So here we understood the concept of hyperbola and the normal lines.In analytic geometry, a hyperbola is a conic section created when a plane meets a double right circular cone at an angle that overlaps both cone halves. So the value of a squared over l squared minus b squared over m squared equals left parenthesis a squared plus b squared right parenthesis squared.

    General
    Maths-

    If the tangents drawn from a point on the hyperbola x to the power of 2 end exponent minus y to the power of 2 end exponent equals a to the power of 2 end exponent minus b to the power of 2 end exponent to the ellipse fraction numerator x to the power of 2 end exponent over denominator a to the power of 2 end exponent end fraction minus fraction numerator y to the power of 2 end exponent over denominator b to the power of 2 end exponent end fraction equals 1 make angles α and β with the transverse axis of the hyperbola, then

    So here we understood the concept of hyperbola and the normal lines.In analytic geometry, a hyperbola is a conic section created when a plane meets a double right circular cone at an angle that overlaps both cone halves. So the correct relation is tan alpha space tan beta equals 1

    If the tangents drawn from a point on the hyperbola x to the power of 2 end exponent minus y to the power of 2 end exponent equals a to the power of 2 end exponent minus b to the power of 2 end exponent to the ellipse fraction numerator x to the power of 2 end exponent over denominator a to the power of 2 end exponent end fraction minus fraction numerator y to the power of 2 end exponent over denominator b to the power of 2 end exponent end fraction equals 1 make angles α and β with the transverse axis of the hyperbola, then

    Maths-General

    So here we understood the concept of hyperbola and the normal lines.In analytic geometry, a hyperbola is a conic section created when a plane meets a double right circular cone at an angle that overlaps both cone halves. So the correct relation is tan alpha space tan beta equals 1

    General
    Maths-

    The eccentricity of the hyperbola whose latus rectum subtends a right angle at centre is

    The eccentricity of the hyperbola whose latus rectum subtends a right angle at centre is

    Maths-General
    parallel
    General
    Maths-

    If r, s, t are prime numbers and p, q are the positive integers such that the LCM of p, q is r2t4s2, then the number of ordered pair (p, q) is –

    Finding the smallest common multiple between any two or more numbers is done using the least common multiple (LCM) approach. A number that is a multiple of two or more other numbers is said to be a common multiple. Here we understood the concept of LCM and the pairs, so the total pairs can be 225.

    If r, s, t are prime numbers and p, q are the positive integers such that the LCM of p, q is r2t4s2, then the number of ordered pair (p, q) is –

    Maths-General

    Finding the smallest common multiple between any two or more numbers is done using the least common multiple (LCM) approach. A number that is a multiple of two or more other numbers is said to be a common multiple. Here we understood the concept of LCM and the pairs, so the total pairs can be 225.

    General
    Maths-

    A rectangle has sides of (2m – 1) & (2n – 1) units as shown in the figure composed of squares having edge length one unit then no. of rectangles which have odd unit length

    Here we used the concept of number system and the rectangle, we can also solve it by permutation and combination. herefore, we get the number of rectangles possible with odd side length = m2n2.

    A rectangle has sides of (2m – 1) & (2n – 1) units as shown in the figure composed of squares having edge length one unit then no. of rectangles which have odd unit length

    Maths-General

    Here we used the concept of number system and the rectangle, we can also solve it by permutation and combination. herefore, we get the number of rectangles possible with odd side length = m2n2.

    General
    maths-

    nCr + 2nCr+1 + nCr+2 is equal to (2  less or equal thanless or equal than n)

    nCr + 2nCr+1 + nCr+2 is equal to (2  less or equal thanless or equal than n)

    maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.