Maths-
General
Easy

Question

The dimensions of a rectangle are shown. Write the area of the rectangle as a sum of cubes .

hintHint:

open parentheses a cubed plus b cubed close parentheses equals left parenthesis a plus b right parenthesis open parentheses a squared minus a b plus b squared close parentheses where a and b can be real values, variables or multiples of both. We are asked to write the area of the rectangle as the sum of cubes

The correct answer is: A = lw


     Step 1 of 2:
    The length of the rectangle is: x squared minus 3 x plus 9
    The width of the rectangle is: (x + 3)
    Thus, the area of the rectangle is:

    table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell A equals l w end cell row cell equals left parenthesis x plus 3 right parenthesis open parentheses x squared minus 3 x plus 9 close parentheses end cell end table
    Step 2 of 2:
    Analyze the area of the rectangle, we get:

    left parenthesis x plus 3 right parenthesis open parentheses x squared minus 3 x plus 9 close parentheses equals x cubed plus 3 cubed , where x equals x straight & y equals 3.
    Thus, the sum of cubes are of the form x cubed plus 3 cubed .

    The area of a rectangle with length l and width w is A = lw

    Related Questions to study

    General
    Maths-

    A Medium sized Shipping box with side length s units has a volume of S3  cubic units.
    a. A Large shipping box has side lengths that are 3 units longer than the medium shipping box. Write a binomial expression for the volume of the large shipping box .
    b. Expand the polynomial in part A to simplify the volume of the large shipping box ?

    The volume of a cuboid with side length a is, V = a3.

    A Medium sized Shipping box with side length s units has a volume of S3  cubic units.
    a. A Large shipping box has side lengths that are 3 units longer than the medium shipping box. Write a binomial expression for the volume of the large shipping box .
    b. Expand the polynomial in part A to simplify the volume of the large shipping box ?

    Maths-General

    The volume of a cuboid with side length a is, V = a3.

    General
    Maths-

    Use the binomial theorem to expand the expressions: open parentheses m squared plus n over 2 close parentheses cubed

    The answer can also be found using the Pascal’s triangle. For the expansion of the expression (x + y)n , we would consider the (n+1)th row in the triangle.

    Use the binomial theorem to expand the expressions: open parentheses m squared plus n over 2 close parentheses cubed

    Maths-General

    The answer can also be found using the Pascal’s triangle. For the expansion of the expression (x + y)n , we would consider the (n+1)th row in the triangle.

    General
    Maths-

    Use the binomial theorem to expand the expressions: left parenthesis 4 g plus 2 h right parenthesis to the power of 4

    The answer can also be found using the Pascal’s triangle. For the expansion of the expression (x + y)n , we would consider the (n+1)th row in the triangle.

    Use the binomial theorem to expand the expressions: left parenthesis 4 g plus 2 h right parenthesis to the power of 4

    Maths-General

    The answer can also be found using the Pascal’s triangle. For the expansion of the expression (x + y)n , we would consider the (n+1)th row in the triangle.

    parallel
    General
    Maths-

    Use the binomial theorem to expand the expressions: left parenthesis 3 x minus 0.2 right parenthesis cubed

    The answer can also be found using the Pascal’s triangle. For the expansion of the expression (x + y)n , we would consider the (n+1)th row in the triangle.

    Use the binomial theorem to expand the expressions: left parenthesis 3 x minus 0.2 right parenthesis cubed

    Maths-General

    The answer can also be found using the Pascal’s triangle. For the expansion of the expression (x + y)n , we would consider the (n+1)th row in the triangle.

    General
    Maths-

    Use the binomial theorem to expand the expressions: left parenthesis n plus 5 right parenthesis to the power of 5

    The answer can also be found using the Pascal’s triangle. For the expansion of the expression (x + y)n , we would consider the (n+1)th row in the triangle.

    Use the binomial theorem to expand the expressions: left parenthesis n plus 5 right parenthesis to the power of 5

    Maths-General

    The answer can also be found using the Pascal’s triangle. For the expansion of the expression (x + y)n , we would consider the (n+1)th row in the triangle.

    General
    Maths-

    Use the binomial theorem to expand the expressions: left parenthesis 2 m plus 2 n right parenthesis to the power of 6

    The answer can also be found using the Pascal’s triangle. For the expansion of the expression (x + y)n , we would consider the (n+1)th row in the triangle.

    Use the binomial theorem to expand the expressions: left parenthesis 2 m plus 2 n right parenthesis to the power of 6

    Maths-General

    The answer can also be found using the Pascal’s triangle. For the expansion of the expression (x + y)n , we would consider the (n+1)th row in the triangle.

    parallel
    General
    Maths-

    Use the binomial theorem to expand the expressions: left parenthesis d minus 3 right parenthesis to the power of 4

    The answer can also be found using the Pascal’s triangle. For the expansion of the expression (x + y)n , we would consider the (n+1)th row in the triangle.

    Use the binomial theorem to expand the expressions: left parenthesis d minus 3 right parenthesis to the power of 4

    Maths-General

    The answer can also be found using the Pascal’s triangle. For the expansion of the expression (x + y)n , we would consider the (n+1)th row in the triangle.

    General
    Maths-

    Use the binomial theorem to expand the expressions: open parentheses x cubed plus y squared close parentheses to the power of 6

    The answer can also be found using the Pascal’s triangle. For the expansion of the expression (x + y)n , we would consider the (n+1)th row in the triangle.

    Use the binomial theorem to expand the expressions: open parentheses x cubed plus y squared close parentheses to the power of 6

    Maths-General

    The answer can also be found using the Pascal’s triangle. For the expansion of the expression (x + y)n , we would consider the (n+1)th row in the triangle.

    General
    Maths-

    Use the binomial theorem to expand the expressions: open parentheses 2 x plus 1 third close parentheses cubed

    The answer can also be found using the Pascal’s triangle. For the expansion of the expression (x + y)n, we would consider the (n+1)th row in the triangle.

    Use the binomial theorem to expand the expressions: open parentheses 2 x plus 1 third close parentheses cubed

    Maths-General

    The answer can also be found using the Pascal’s triangle. For the expansion of the expression (x + y)n, we would consider the (n+1)th row in the triangle.

    parallel
    General
    Maths-

    Use the binomial theorem to expand the expressions: open parentheses x squared plus 1 close parentheses to the power of 4

    The answer can also be found using the Pascal’s triangle. For the expansion of the expression (x + y)n  , we would consider the (n+1)th row in the triangle.

    Use the binomial theorem to expand the expressions: open parentheses x squared plus 1 close parentheses to the power of 4

    Maths-General

    The answer can also be found using the Pascal’s triangle. For the expansion of the expression (x + y)n  , we would consider the (n+1)th row in the triangle.

    General
    Maths-

    Use the binomial theorem to expand the expressions: left parenthesis b minus 0.5 right parenthesis to the power of 4

    The expansion of (x + y)n  can be also found using the Pascal’s triangle using the (n+1)th row of the triangle.

    Use the binomial theorem to expand the expressions: left parenthesis b minus 0.5 right parenthesis to the power of 4

    Maths-General

    The expansion of (x + y)n  can be also found using the Pascal’s triangle using the (n+1)th row of the triangle.

    General
    Maths-

    Use the binomial theorem to expand the expressions: left parenthesis 2 a minus b right parenthesis to the power of 5

    The answer can also be found using the Pascal’s triangle. For the expansion of the expression (x + y)n , we would consider the (n+1)th row in the triangle.

    Use the binomial theorem to expand the expressions: left parenthesis 2 a minus b right parenthesis to the power of 5

    Maths-General

    The answer can also be found using the Pascal’s triangle. For the expansion of the expression (x + y)n , we would consider the (n+1)th row in the triangle.

    parallel
    General
    Maths-

    Use the binomial theorem to expand the expressions: left parenthesis x plus 3 right parenthesis cubed

    The answer can also be found using the Pascal’s triangle (using the fourth row).

    Use the binomial theorem to expand the expressions: left parenthesis x plus 3 right parenthesis cubed

    Maths-General

    The answer can also be found using the Pascal’s triangle (using the fourth row).

    General
    Maths-

    Use polynomial identities to factor the polynomials or simplify the expressions : 8 cubed minus 2 cubed

    Polynomial identities are equations that are true for all possible values of the variable. We can perform polynomial multiplication by applying the distributive property to the multiplication of polynomials.

    Use polynomial identities to factor the polynomials or simplify the expressions : 8 cubed minus 2 cubed

    Maths-General

    Polynomial identities are equations that are true for all possible values of the variable. We can perform polynomial multiplication by applying the distributive property to the multiplication of polynomials.

    General
    Maths-

    Use polynomial identities to factor the polynomials or simplify the expressions :
    10 cubed minus 3 cubed

    Polynomial identities are equations that are true for all possible values of the variable. We can perform polynomial multiplication by applying the distributive property to the multiplication of polynomials.

    Use polynomial identities to factor the polynomials or simplify the expressions :
    10 cubed minus 3 cubed

    Maths-General

    Polynomial identities are equations that are true for all possible values of the variable. We can perform polynomial multiplication by applying the distributive property to the multiplication of polynomials.

    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.