Maths-
SAT
Easy

Question


The line graph above shows the average price of one metric ton of oranges, in  dollars, for each of seven months in 2014.
Between which two consecutive months shown did the average price of one  metric ton of oranges decrease the most?

  1. March to April
  2. May to June
  3. June to July
  4. July to August

The correct answer is: June to July


    STEP BY STEP SOLUTION

    By observing the line graph the average price of one metric ton of oranges decreases most from June to July.

    Related Questions to study

    General
    Maths-

    Use polynomial identities to factor the polynomials or simplify the expressions : 8 cubed minus 2 cubed

    Polynomial identities are equations that are true for all possible values of the variable. We can perform polynomial multiplication by applying the distributive property to the multiplication of polynomials.

    Use polynomial identities to factor the polynomials or simplify the expressions : 8 cubed minus 2 cubed

    Maths-General

    Polynomial identities are equations that are true for all possible values of the variable. We can perform polynomial multiplication by applying the distributive property to the multiplication of polynomials.

    General
    Maths-

    Use the binomial theorem to expand the expressions: left parenthesis x plus 3 right parenthesis cubed

    The answer can also be found using the Pascal’s triangle (using the fourth row).

    Use the binomial theorem to expand the expressions: left parenthesis x plus 3 right parenthesis cubed

    Maths-General

    The answer can also be found using the Pascal’s triangle (using the fourth row).

    General
    Maths-

    Use the binomial theorem to expand the expressions: left parenthesis 2 a minus b right parenthesis to the power of 5

    The answer can also be found using the Pascal’s triangle. For the expansion of the expression (x + y)n , we would consider the (n+1)th row in the triangle.

    Use the binomial theorem to expand the expressions: left parenthesis 2 a minus b right parenthesis to the power of 5

    Maths-General

    The answer can also be found using the Pascal’s triangle. For the expansion of the expression (x + y)n , we would consider the (n+1)th row in the triangle.

    parallel
    General
    Maths-

    Use the binomial theorem to expand the expressions: left parenthesis b minus 0.5 right parenthesis to the power of 4

    The expansion of (x + y)n  can be also found using the Pascal’s triangle using the (n+1)th row of the triangle.

    Use the binomial theorem to expand the expressions: left parenthesis b minus 0.5 right parenthesis to the power of 4

    Maths-General

    The expansion of (x + y)n  can be also found using the Pascal’s triangle using the (n+1)th row of the triangle.

    General
    Maths-

    Use the binomial theorem to expand the expressions: open parentheses x squared plus 1 close parentheses to the power of 4

    The answer can also be found using the Pascal’s triangle. For the expansion of the expression (x + y)n  , we would consider the (n+1)th row in the triangle.

    Use the binomial theorem to expand the expressions: open parentheses x squared plus 1 close parentheses to the power of 4

    Maths-General

    The answer can also be found using the Pascal’s triangle. For the expansion of the expression (x + y)n  , we would consider the (n+1)th row in the triangle.

    General
    Maths-

    Use the binomial theorem to expand the expressions: open parentheses 2 x plus 1 third close parentheses cubed

    The answer can also be found using the Pascal’s triangle. For the expansion of the expression (x + y)n, we would consider the (n+1)th row in the triangle.

    Use the binomial theorem to expand the expressions: open parentheses 2 x plus 1 third close parentheses cubed

    Maths-General

    The answer can also be found using the Pascal’s triangle. For the expansion of the expression (x + y)n, we would consider the (n+1)th row in the triangle.

    parallel
    General
    Maths-

    Use the binomial theorem to expand the expressions: open parentheses x cubed plus y squared close parentheses to the power of 6

    The answer can also be found using the Pascal’s triangle. For the expansion of the expression (x + y)n , we would consider the (n+1)th row in the triangle.

    Use the binomial theorem to expand the expressions: open parentheses x cubed plus y squared close parentheses to the power of 6

    Maths-General

    The answer can also be found using the Pascal’s triangle. For the expansion of the expression (x + y)n , we would consider the (n+1)th row in the triangle.

    General
    Maths-

    Use the binomial theorem to expand the expressions: left parenthesis d minus 3 right parenthesis to the power of 4

    The answer can also be found using the Pascal’s triangle. For the expansion of the expression (x + y)n , we would consider the (n+1)th row in the triangle.

    Use the binomial theorem to expand the expressions: left parenthesis d minus 3 right parenthesis to the power of 4

    Maths-General

    The answer can also be found using the Pascal’s triangle. For the expansion of the expression (x + y)n , we would consider the (n+1)th row in the triangle.

    General
    Maths-

    Use the binomial theorem to expand the expressions: left parenthesis 2 m plus 2 n right parenthesis to the power of 6

    The answer can also be found using the Pascal’s triangle. For the expansion of the expression (x + y)n , we would consider the (n+1)th row in the triangle.

    Use the binomial theorem to expand the expressions: left parenthesis 2 m plus 2 n right parenthesis to the power of 6

    Maths-General

    The answer can also be found using the Pascal’s triangle. For the expansion of the expression (x + y)n , we would consider the (n+1)th row in the triangle.

    parallel
    General
    Maths-

    Use the binomial theorem to expand the expressions: left parenthesis n plus 5 right parenthesis to the power of 5

    The answer can also be found using the Pascal’s triangle. For the expansion of the expression (x + y)n , we would consider the (n+1)th row in the triangle.

    Use the binomial theorem to expand the expressions: left parenthesis n plus 5 right parenthesis to the power of 5

    Maths-General

    The answer can also be found using the Pascal’s triangle. For the expansion of the expression (x + y)n , we would consider the (n+1)th row in the triangle.

    General
    Maths-

    Use the binomial theorem to expand the expressions: left parenthesis 3 x minus 0.2 right parenthesis cubed

    The answer can also be found using the Pascal’s triangle. For the expansion of the expression (x + y)n , we would consider the (n+1)th row in the triangle.

    Use the binomial theorem to expand the expressions: left parenthesis 3 x minus 0.2 right parenthesis cubed

    Maths-General

    The answer can also be found using the Pascal’s triangle. For the expansion of the expression (x + y)n , we would consider the (n+1)th row in the triangle.

    General
    Maths-

    Use the binomial theorem to expand the expressions: left parenthesis 4 g plus 2 h right parenthesis to the power of 4

    The answer can also be found using the Pascal’s triangle. For the expansion of the expression (x + y)n , we would consider the (n+1)th row in the triangle.

    Use the binomial theorem to expand the expressions: left parenthesis 4 g plus 2 h right parenthesis to the power of 4

    Maths-General

    The answer can also be found using the Pascal’s triangle. For the expansion of the expression (x + y)n , we would consider the (n+1)th row in the triangle.

    parallel
    General
    Maths-

    Use the binomial theorem to expand the expressions: open parentheses m squared plus n over 2 close parentheses cubed

    The answer can also be found using the Pascal’s triangle. For the expansion of the expression (x + y)n , we would consider the (n+1)th row in the triangle.

    Use the binomial theorem to expand the expressions: open parentheses m squared plus n over 2 close parentheses cubed

    Maths-General

    The answer can also be found using the Pascal’s triangle. For the expansion of the expression (x + y)n , we would consider the (n+1)th row in the triangle.

    General
    Maths-

    A Medium sized Shipping box with side length s units has a volume of S3  cubic units.
    a. A Large shipping box has side lengths that are 3 units longer than the medium shipping box. Write a binomial expression for the volume of the large shipping box .
    b. Expand the polynomial in part A to simplify the volume of the large shipping box ?

    The volume of a cuboid with side length a is, V = a3.

    A Medium sized Shipping box with side length s units has a volume of S3  cubic units.
    a. A Large shipping box has side lengths that are 3 units longer than the medium shipping box. Write a binomial expression for the volume of the large shipping box .
    b. Expand the polynomial in part A to simplify the volume of the large shipping box ?

    Maths-General

    The volume of a cuboid with side length a is, V = a3.

    General
    Maths-

    The dimensions of a rectangle are shown. Write the area of the rectangle as a sum of cubes .

    The area of a rectangle with length l and width w is A = lw

    The dimensions of a rectangle are shown. Write the area of the rectangle as a sum of cubes .

    Maths-General

    The area of a rectangle with length l and width w is A = lw

    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.