Maths-
General
Easy

Question

The normal to the curve x = 3 cos thetacos cubed theta, y = 3 sin thetasin cubedtheta at the point theta = pi/4 passes through the point -

  1. (2, –2)    
  2. (0, 0)    
  3. (–1, 1)    
  4. None of these    

hintHint:

Find, Slope of tangent = fraction numerator d y over denominator d x end fraction = fraction numerator begin display style bevelled fraction numerator d y over denominator d theta end fraction end style over denominator begin display style bevelled fraction numerator d x over denominator d theta end fraction end style end fraction
Then find slope of normal, and substitute the values in equation of normal line.

The correct answer is: (0, 0)


    Given :
    x = 3 cos theta space minus space cos cubed theta
    y space equals space 2 sin theta space minus space sin cubed theta
    At theta space equals space straight pi over 4
    x space equals space 3 cos straight pi over 4 space minus space space cos cubed straight pi over 4 space equals space 3 cross times fraction numerator 1 over denominator square root of 2 end fraction space minus space fraction numerator 1 over denominator 2 square root of 2 end fraction space equals space fraction numerator 5 over denominator 2 square root of 2 end fraction
y space equals space 2 sin straight pi over 4 space minus space sin cubed straight pi over 4 space equals space 2 cross times fraction numerator 1 over denominator square root of 2 end fraction space minus space fraction numerator 1 over denominator 2 square root of 2 end fraction space equals space fraction numerator 5 over denominator 2 square root of 2 end fraction
    At P( theta space equals space straight pi over 4 right parenthesis = left parenthesis fraction numerator 5 over denominator 2 square root of 2 end fraction comma space fraction numerator 5 over denominator 2 square root of 2 end fraction right parenthesis
    Slope of tangent = fraction numerator d y over denominator d x end fraction = fraction numerator begin display style bevelled fraction numerator d y over denominator d theta end fraction end style over denominator begin display style bevelled fraction numerator d x over denominator d theta end fraction end style end fraction
    fraction numerator d y over denominator d theta end fraction space equals space 3 cos theta space minus space 3 sin squared theta cos theta
fraction numerator d x over denominator d theta end fraction space equals space minus 3 sin theta space plus thin space space 3 cos squared theta sin theta
    fraction numerator d y over denominator d x end fraction = fraction numerator begin display style bevelled fraction numerator d y over denominator d theta end fraction end style over denominator begin display style bevelled fraction numerator d x over denominator d theta end fraction end style end fraction space equals space fraction numerator 3 cos theta space minus space 3 sin squared theta cos theta over denominator negative 3 sin theta space plus space 3 cos squared theta sin theta end fraction
    Slope of tangent at point P(theta space equals space straight pi over 4 right parenthesis  = fraction numerator 3 cross times begin display style fraction numerator 1 over denominator square root of 2 end fraction end style space minus space 3 cross times begin display style 1 half end style cross times begin display style fraction numerator 1 over denominator square root of 2 end fraction end style over denominator negative 3 cross times begin display style fraction numerator 1 over denominator square root of 2 end fraction end style space plus space 3 cross times begin display style 1 half end style space cross times begin display style fraction numerator 1 over denominator square root of 2 end fraction end style end fraction space equals space fraction numerator begin display style bevelled fraction numerator 3 over denominator 2 square root of 2 end fraction end style over denominator begin display style bevelled fraction numerator negative 3 over denominator 2 square root of 2 end fraction end style end fraction space equals space minus 1

    When slope of tangent at P= -1
    Slope of normal at point P = 1
    Equation of normal at point P 
    y - y1 = m(x-x1)
    y space minus space fraction numerator 5 over denominator 2 square root of 2 end fraction space equals space 1 open parentheses x minus space fraction numerator 5 over denominator 2 square root of 2 end fraction close parentheses space rightwards double arrow space y space equals space x
W h e n space y space equals space x comma space t h i s space m e a n s space t h e space l i n e space p a s s e s space t h r o u g h space t h e space o r i g i n space left parenthesis 0 comma 0 right parenthesis

    Related Questions to study

    General
    Maths-

    The normal of the curve given by the equation x = a (sintheta + costheta), y = a (sintheta – costheta) at the point Q is -

    The normal of the curve given by the equation x = a (sintheta + costheta), y = a (sintheta – costheta) at the point Q is -

    Maths-General
    General
    Maths-

    If the tangent at ‘t’ on the curve y = 8 t cubed space minus 1x = 4 t squared space plus space 3 meets the curve again at t subscript 1 and is normal to the curve at that point, then value of t must be -

    If the tangent at ‘t’ on the curve y = 8 t cubed space minus 1x = 4 t squared space plus space 3 meets the curve again at t subscript 1 and is normal to the curve at that point, then value of t must be -

    Maths-General
    General
    Maths-

    The tangent at (t, t squared – t cubed) on the curve y = x squared – x cubed meets the curve again at Q, then abscissa of Q must be -

    The tangent at (t, t squared – t cubed) on the curve y = x squared – x cubed meets the curve again at Q, then abscissa of Q must be -

    Maths-General
    parallel
    General
    Maths-

    If fraction numerator x over denominator a end fraction plus fraction numerator y over denominator b end fraction = 1 is a tangent to the curve x = 4t,y =fraction numerator 4 over denominator t end fraction, t element of R then -

    If fraction numerator x over denominator a end fraction plus fraction numerator y over denominator b end fraction = 1 is a tangent to the curve x = 4t,y =fraction numerator 4 over denominator t end fraction, t element of R then -

    Maths-General
    General
    Maths-

    The line fraction numerator x over denominator a end fraction + fraction numerator y over denominator b end fraction = 1 touches the curve  y space equals space b e to the power of negative x over a end exponent at the point :

    The line fraction numerator x over denominator a end fraction + fraction numerator y over denominator b end fraction = 1 touches the curve  y space equals space b e to the power of negative x over a end exponent at the point :

    Maths-General
    General
    physics

    An object moves in a straight line. It starts from the rest and its acceleration is . 2 ms2.After reaching a certain point it comes back to the original point. In this movement its acceleration  is -3 ms2, till it comes to rest. The total time taken for the movement is 5 second. Calculate the maximum velocity.

    An object moves in a straight line. It starts from the rest and its acceleration is . 2 ms2.After reaching a certain point it comes back to the original point. In this movement its acceleration  is -3 ms2, till it comes to rest. The total time taken for the movement is 5 second. Calculate the maximum velocity.

    physicsGeneral
    parallel
    General
    Maths-

    For the ellipse fraction numerator x to the power of 2 end exponent over denominator 2 end fraction plus fraction numerator y to the power of 2 end exponent over denominator 1 end fraction equals 1 comma the foci are

    For the ellipse fraction numerator x to the power of 2 end exponent over denominator 2 end fraction plus fraction numerator y to the power of 2 end exponent over denominator 1 end fraction equals 1 comma the foci are

    Maths-General
    General
    Maths-

    For the ellipse x squared over 4 plus y squared over 1 equals 1, the latus rectum is

    For the ellipse x squared over 4 plus y squared over 1 equals 1, the latus rectum is

    Maths-General
    General
    Maths-

    The sum of distances of any point on the ellipse 3 x2 + 4y2 = 24 from its foci is

    The sum of distances of any point on the ellipse 3 x2 + 4y2 = 24 from its foci is

    Maths-General
    parallel
    General
    Maths-

    The equations x = a open parentheses fraction numerator 1 minus t to the power of 2 end exponent over denominator 1 plus t to the power of 2 end exponent end fraction close parentheses semicolon y equals fraction numerator 2 b t over denominator 1 plus t to the power of 2 end exponent end fraction semicolon t element of R represent

    The equations x = a open parentheses fraction numerator 1 minus t to the power of 2 end exponent over denominator 1 plus t to the power of 2 end exponent end fraction close parentheses semicolon y equals fraction numerator 2 b t over denominator 1 plus t to the power of 2 end exponent end fraction semicolon t element of R represent

    Maths-General
    General
    Maths-

    The equations x = a cos q, y = b sin q, 0 ≤ q < 2 p, a ≠ b, represent

    The equations x = a cos q, y = b sin q, 0 ≤ q < 2 p, a ≠ b, represent

    Maths-General
    General
    Maths-

    The line y = 2x + c touches the ellipse fraction numerator x to the power of 2 end exponent over denominator 16 end fraction plus fraction numerator y to the power of 2 end exponent over denominator 4 end fraction equals 1 if c is equal to

    The line y = 2x + c touches the ellipse fraction numerator x to the power of 2 end exponent over denominator 16 end fraction plus fraction numerator y to the power of 2 end exponent over denominator 4 end fraction equals 1 if c is equal to

    Maths-General
    parallel
    General
    Maths-

    The eccentricity of the conic 3x2 + 4y2 = 24 is

    The eccentricity of the conic 3x2 + 4y2 = 24 is

    Maths-General
    General
    Maths-

    The equation of the ellipse whose focus is (1, -1). directrix x – y – 3 = 0 and eccentricity fraction numerator 1 over denominator 2 end fraction is

    The equation of the ellipse whose focus is (1, -1). directrix x – y – 3 = 0 and eccentricity fraction numerator 1 over denominator 2 end fraction is

    Maths-General
    General
    Maths-

    The equation ax2 + 2hxy + by2 + 2gx + 2fy + c = 0 represents an ellipse if

    The equation ax2 + 2hxy + by2 + 2gx + 2fy + c = 0 represents an ellipse if

    Maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.