Physics-
General
Easy

Question

Adjoining figure shows a force of 40 N acting at 30° to the horizontal on a body of mass 5 kg resting on a smooth horizontal surface. Assuming that the acceleration of free–fall is 10 ms–2, which of the following statements A, B, C, D, E is (are) correct? [1] The horizontal force acting on the body is 20 N [2] The weight of the 5 kg mass acts vertically downwards [3] The net vertical force acting on the body is 30 N

  1. 1, 2, 3    
  2. 1, 2    
  3. 2 only    
  4. 1 only    

The correct answer is: 2 only

Related Questions to study

General
Physics-

A student calculates the acceleration of m1 in figure shown as a subscript 1 end subscript equals fraction numerator open parentheses m subscript 1 end subscript minus m subscript 2 end subscript close parentheses g over denominator m subscript 1 end subscript plus m subscript 2 end subscript end fraction Which assumption is not required to do this calculation.

A student calculates the acceleration of m1 in figure shown as a subscript 1 end subscript equals fraction numerator open parentheses m subscript 1 end subscript minus m subscript 2 end subscript close parentheses g over denominator m subscript 1 end subscript plus m subscript 2 end subscript end fraction Which assumption is not required to do this calculation.

Physics-General
General
Physics-

A small block of mass m is placed on a wedge of mass M as shown, which is initially at rest. All the surfaces are frictionless . The spring attached to the other end of wedge has force constant k. If a' is the acceleration of m relative to the wedge as it starts coming down and A is the acceleration acquired by the wedge as the block starts coming down, then

Maximum retardation of M is:

A small block of mass m is placed on a wedge of mass M as shown, which is initially at rest. All the surfaces are frictionless . The spring attached to the other end of wedge has force constant k. If a' is the acceleration of m relative to the wedge as it starts coming down and A is the acceleration acquired by the wedge as the block starts coming down, then

Maximum retardation of M is:

Physics-General
General
Physics-

A small block of mass m is placed on a wedge of mass M as shown, which is initially at rest. All the surfaces are frictionless . The spring attached to the other end of wedge has force constant k. If a' is the acceleration of m relative to the wedge as it starts coming down and A is the acceleration acquired by the wedge as the block starts coming down, then

Maximum velocity of M is:

A small block of mass m is placed on a wedge of mass M as shown, which is initially at rest. All the surfaces are frictionless . The spring attached to the other end of wedge has force constant k. If a' is the acceleration of m relative to the wedge as it starts coming down and A is the acceleration acquired by the wedge as the block starts coming down, then

Maximum velocity of M is:

Physics-General
parallel
General
Physics-

A small block of mass m is placed on a wedge of mass M as shown, which is initially at rest. All the surfaces are frictionless . The spring attached to the other end of wedge has force constant k. If a' is the acceleration of m relative to the wedge as it starts coming down and A is the acceleration acquired by the wedge as the block starts coming down, then

A small block of mass m is placed on a wedge of mass M as shown, which is initially at rest. All the surfaces are frictionless . The spring attached to the other end of wedge has force constant k. If a' is the acceleration of m relative to the wedge as it starts coming down and A is the acceleration acquired by the wedge as the block starts coming down, then

Physics-General
General
Physics-

Two persons of mass m1 and m2 are standing at the two ends A and B respectively, of a trolley of mass M as shown.

Choose the incorrect statement, if m1 = m2 = m and both the persons jump one by one, then

Two persons of mass m1 and m2 are standing at the two ends A and B respectively, of a trolley of mass M as shown.

Choose the incorrect statement, if m1 = m2 = m and both the persons jump one by one, then

Physics-General
General
Physics-

Two persons of mass m1 and m2 are standing at the two ends A and B respectively, of a trolley of mass M as shown.

When both the persons jump simultaneously with urel with respect to the trolley, then the velocity of the trolley is

Two persons of mass m1 and m2 are standing at the two ends A and B respectively, of a trolley of mass M as shown.

When both the persons jump simultaneously with urel with respect to the trolley, then the velocity of the trolley is

Physics-General
parallel
General
Physics-

Two persons of mass m1 and m2 are standing at the two ends A and B respectively, of a trolley of mass M as shown.

When both the persons jump simultaneously with same speed then

Two persons of mass m1 and m2 are standing at the two ends A and B respectively, of a trolley of mass M as shown.

When both the persons jump simultaneously with same speed then

Physics-General
General
Physics-

Two persons of mass m1 and m2 are standing at the two ends A and B respectively, of a trolley of mass M as shown.

When only the person standing at B jumps from the trolley towards right while the person at A keeps standing, then

Two persons of mass m1 and m2 are standing at the two ends A and B respectively, of a trolley of mass M as shown.

When only the person standing at B jumps from the trolley towards right while the person at A keeps standing, then

Physics-General
General
Physics-

Two persons of mass m1 and m2 are standing at the two ends A and B respectively, of a trolley of mass M as shown.

When the person standing at A jumps from the trolley towards left with urel with respect to the trolley, then

Two persons of mass m1 and m2 are standing at the two ends A and B respectively, of a trolley of mass M as shown.

When the person standing at A jumps from the trolley towards left with urel with respect to the trolley, then

Physics-General
parallel
General
Physics-

The figure shows a man of mass m standing at the end A of a trolley of mass M placed at rest on a smooth horizontal surface. The man starts moving towards the end B with a velocity urel with respect to the trolley. The length of the trolley is L.

Choose the correct statement

The figure shows a man of mass m standing at the end A of a trolley of mass M placed at rest on a smooth horizontal surface. The man starts moving towards the end B with a velocity urel with respect to the trolley. The length of the trolley is L.

Choose the correct statement

Physics-General
General
Physics-

The figure shows a man of mass m standing at the end A of a trolley of mass M placed at rest on a smooth horizontal surface. The man starts moving towards the end B with a velocity urel with respect to the trolley. The length of the trolley is L.

The distance moved by the man with respect to ground is

The figure shows a man of mass m standing at the end A of a trolley of mass M placed at rest on a smooth horizontal surface. The man starts moving towards the end B with a velocity urel with respect to the trolley. The length of the trolley is L.

The distance moved by the man with respect to ground is

Physics-General
General
Physics-

The figure shows a man of mass m standing at the end A of a trolley of mass M placed at rest on a smooth horizontal surface. The man starts moving towards the end B with a velocity urel with respect to the trolley. The length of the trolley is L.

When the man reaches the end B, the distance moved by the trolley with respect to ground is

The figure shows a man of mass m standing at the end A of a trolley of mass M placed at rest on a smooth horizontal surface. The man starts moving towards the end B with a velocity urel with respect to the trolley. The length of the trolley is L.

When the man reaches the end B, the distance moved by the trolley with respect to ground is

Physics-General
parallel
General
Physics-

The figure shows a man of mass m standing at the end A of a trolley of mass M placed at rest on a smooth horizontal surface. The man starts moving towards the end B with a velocity urel with respect to the trolley. The length of the trolley is L.

As the man walks on the trolley, the centre of mass of the system (man + trolley)

The figure shows a man of mass m standing at the end A of a trolley of mass M placed at rest on a smooth horizontal surface. The man starts moving towards the end B with a velocity urel with respect to the trolley. The length of the trolley is L.

As the man walks on the trolley, the centre of mass of the system (man + trolley)

Physics-General
General
Physics-

The figure shows a man of mass m standing at the end A of a trolley of mass M placed at rest on a smooth horizontal surface. The man starts moving towards the end B with a velocity urel with respect to the trolley. The length of the trolley is L.

The time taken by the man to reach the other end is

The figure shows a man of mass m standing at the end A of a trolley of mass M placed at rest on a smooth horizontal surface. The man starts moving towards the end B with a velocity urel with respect to the trolley. The length of the trolley is L.

The time taken by the man to reach the other end is

Physics-General
General
Physics-

The figure shows a man of mass m standing at the end A of a trolley of mass M placed at rest on a smooth horizontal surface. The man starts moving towards the end B with a velocity urel with respect to the trolley. The length of the trolley is L.

The velocity of the man with respect to ground v1 will be

The figure shows a man of mass m standing at the end A of a trolley of mass M placed at rest on a smooth horizontal surface. The man starts moving towards the end B with a velocity urel with respect to the trolley. The length of the trolley is L.

The velocity of the man with respect to ground v1 will be

Physics-General
parallel

card img

With Turito Academy.

card img

With Turito Foundation.

card img

Get an Expert Advice From Turito.

Turito Academy

card img

With Turito Academy.

Test Prep

card img

With Turito Foundation.