Physics-
General
Easy

Question

There are three strings RP, PQ and QS as shown. Their mass and lengths are RP = (0.1Kg, 2m), PQ = (0.2 Kg, 3 m), QS = (0.15 Kg, 4 m) respectively. All the strings are under same tension. Wave-1 is incident at P. It is partly reflected (wave-2) and partly transmitted (wave-3). Now wave-3 is incident at Q. It is again partly transmitted (wave-5) and partly reflected (wave-4). Phase difference between wave-1 and wave :

  1. 2 is pi    
  2. 4 is zero    
  3. both (a) and (b) are correct    
  4. both (a) and (b) are wrong    

The correct answer is: both (a) and (b) are correct

Related Questions to study

General
Physics-

The figure shows at time t = 0 second, a rectangular and triangular pulse on a uniform wire are approaching each other. The pulse speed is 0.5 cm/s. The resultant pulse at t = 2 second is

The figure shows at time t = 0 second, a rectangular and triangular pulse on a uniform wire are approaching each other. The pulse speed is 0.5 cm/s. The resultant pulse at t = 2 second is

Physics-General
General
Physics-

A string of length ‘l’ is fixed at both ends. It is vibrating in its 3rd overtone with maximum amplitude ‘a’. The amplitude at a distance l/3 from one end is :

A string of length ‘l’ is fixed at both ends. It is vibrating in its 3rd overtone with maximum amplitude ‘a’. The amplitude at a distance l/3 from one end is :

Physics-General
General
Physics-

The figure shows four progressive waves A, B, C & D. It can be concluded from the figure that with respect to wave A:

The figure shows four progressive waves A, B, C & D. It can be concluded from the figure that with respect to wave A:

Physics-General
parallel
General
Physics-

A wave pulse is generated in a string that lies along x-axis. At the points A and B, as shown in figure, if RA and RB are ratio of wave speed to the particle speed respectively then :

A wave pulse is generated in a string that lies along x-axis. At the points A and B, as shown in figure, if RA and RB are ratio of wave speed to the particle speed respectively then :

Physics-General
General
Physics-

Wave pulse on a string shown in figure is moving to the right without changing shape. Consider two particles at positions x1 = 1.5 m and x2 = 2.5 m. Their transverse velocities at the moment shown in figure are along directions :

Wave pulse on a string shown in figure is moving to the right without changing shape. Consider two particles at positions x1 = 1.5 m and x2 = 2.5 m. Their transverse velocities at the moment shown in figure are along directions :

Physics-General
General
Physics-

The displacement Vs time graph for two waves A and B which travel along the same string are shown in the figure. Their intensity ratio IA /IB is

The displacement Vs time graph for two waves A and B which travel along the same string are shown in the figure. Their intensity ratio IA /IB is

Physics-General
parallel
General
Physics-

Two trains A and B are moving with speed 20 m/s and 30 m/s respectively in the same direction on the same straight track, with B ahead of A. The engines are at the front ends. The engine of train A blows a long whistle. Assume that the sound of the whistle is composed of components varying in frequency from ƒ1 = 800 Hz to ƒ2 = 1120 Hz, as shown in the figure. The spread in the frequency (highest frequency–lowest frequency) is thus 320 Hz. The speed of sound in still air is 340 m/s. The spread of frequency as observed by the passengers in train B is :–

Two trains A and B are moving with speed 20 m/s and 30 m/s respectively in the same direction on the same straight track, with B ahead of A. The engines are at the front ends. The engine of train A blows a long whistle. Assume that the sound of the whistle is composed of components varying in frequency from ƒ1 = 800 Hz to ƒ2 = 1120 Hz, as shown in the figure. The spread in the frequency (highest frequency–lowest frequency) is thus 320 Hz. The speed of sound in still air is 340 m/s. The spread of frequency as observed by the passengers in train B is :–

Physics-General
General
Physics-

A transverse sinusoidal wave moves along a string in the positive x–direction at a speed of 10 cm/s. The wavelength of the wave is 0.5 m and its amplitude is 10 cm. At a particular time t, the snap–shot of the wave is shown in figure. The velocity of point P when its displacement is 5 cm is :–

A transverse sinusoidal wave moves along a string in the positive x–direction at a speed of 10 cm/s. The wavelength of the wave is 0.5 m and its amplitude is 10 cm. At a particular time t, the snap–shot of the wave is shown in figure. The velocity of point P when its displacement is 5 cm is :–

Physics-General
General
Physics-

A massless rod BD is suspended by two identical massless strings AB and CD of equal lengths. A block of mass m is suspended at point P such that BP is equal to x, if the fundamental frequency of the left wire is twice the fundamental frequency of right wire, then the value of x is :

A massless rod BD is suspended by two identical massless strings AB and CD of equal lengths. A block of mass m is suspended at point P such that BP is equal to x, if the fundamental frequency of the left wire is twice the fundamental frequency of right wire, then the value of x is :

Physics-General
parallel
General
Physics-

An open pipe is in resonance in 2nd harmonic with frequency ƒ1 . Now one end of the tube is closed and frequency is increased to ƒ2 such that the resonance again occurs in nth harmonic. Choose the correct option :–

An open pipe is in resonance in 2nd harmonic with frequency ƒ1 . Now one end of the tube is closed and frequency is increased to ƒ2 such that the resonance again occurs in nth harmonic. Choose the correct option :–

Physics-General
General
Physics-

A police car moving at 22 m/s chases a motorcyclist. The police man sounds his horn at 176 Hz, while both of them move towards a stationary siren of frequency 165 Hz. Calculate the speed of the motorcycle. If it is given that the motorcyclist does not observe any beats :–

A police car moving at 22 m/s chases a motorcyclist. The police man sounds his horn at 176 Hz, while both of them move towards a stationary siren of frequency 165 Hz. Calculate the speed of the motorcycle. If it is given that the motorcyclist does not observe any beats :–

Physics-General
General
Physics-

Two pulses in a stretched string, whose centers are initially 8 cm apart, are moving towards each other as shown in the figure. The speed of each pulse is 2 cm/s. After 2 s the total energy of the pulses will be :–

Two pulses in a stretched string, whose centers are initially 8 cm apart, are moving towards each other as shown in the figure. The speed of each pulse is 2 cm/s. After 2 s the total energy of the pulses will be :–

Physics-General
parallel
General
Physics-

A train moves towards a stationary observer with speed 34 m/s. The train sounds a whistle and its frequency registered by the observer is ƒ1. If the train's speed is reduced to 17 m/s, the frequency registered is ƒ2. If the speed of sound is 340 m/s then the ratio fraction numerator I subscript 1 end subscript over denominator I subscript 2 end subscript end fraction blankis:–

A train moves towards a stationary observer with speed 34 m/s. The train sounds a whistle and its frequency registered by the observer is ƒ1. If the train's speed is reduced to 17 m/s, the frequency registered is ƒ2. If the speed of sound is 340 m/s then the ratio fraction numerator I subscript 1 end subscript over denominator I subscript 2 end subscript end fraction blankis:–

Physics-General
General
Physics-

The equation of a wave on a string of linear mass density 0.04 kg m–1 is given by y = 0.02(m) sin open square brackets 2 pi open parentheses fraction numerator t over denominator 0.04 left parenthesis s right parenthesis end fraction minus fraction numerator x over denominator 0.50 left parenthesis m right parenthesis end fraction close parentheses close square brackets The tension in the string is:

The equation of a wave on a string of linear mass density 0.04 kg m–1 is given by y = 0.02(m) sin open square brackets 2 pi open parentheses fraction numerator t over denominator 0.04 left parenthesis s right parenthesis end fraction minus fraction numerator x over denominator 0.50 left parenthesis m right parenthesis end fraction close parentheses close square brackets The tension in the string is:

Physics-General
General
Chemistry-

Statement 1:Compound (I) is formed not (II)

Statement 2:Due to the reduction of central ring, 3 four-membered anti-aromatic rings become stable to form (I). In (II), due to the reduction of terminal ring, only one anti-aromatic ring can be stabilized

Statement 1:Compound (I) is formed not (II)

Statement 2:Due to the reduction of central ring, 3 four-membered anti-aromatic rings become stable to form (I). In (II), due to the reduction of terminal ring, only one anti-aromatic ring can be stabilized

Chemistry-General
parallel

card img

With Turito Academy.

card img

With Turito Foundation.

card img

Get an Expert Advice From Turito.

Turito Academy

card img

With Turito Academy.

Test Prep

card img

With Turito Foundation.