Physics-
General
Easy
Question
Two racing cars of masses m1 and m2 are moving in circles of radii r1 and r2 respectively. Their speed are such that each makes a complete circle in the same duration of time t. The ratio of the angular speed of the first to the second car is :
- m1 : m2
- r1 : r2
- 1 : 1
- m1 r1 : m2 r2
The correct answer is: 1 : 1
Related Questions to study
Physics-
A particle moves with constant angular velocity in a circle. During the motion its
A particle moves with constant angular velocity in a circle. During the motion its
Physics-General
physics-
If the time period of a pendulum is 1 sec, then what is the length of the pendulum at point of intersection of l-T and graph
If the time period of a pendulum is 1 sec, then what is the length of the pendulum at point of intersection of l-T and graph
physics-General
Physics-
The acceleration of connector as a function of x
The acceleration of connector as a function of x
Physics-General
physics-
A wire frame as shown in figure is made to rotate about a vertical axis passing through O. There exists a uniform horizontal magnetic field of induction B = 1 Tesla if If the frame rotates (slowly) about 'O' with angular velocity directed along Z-axis having magnitude 4rad/s, the potential difference between O & B is
A wire frame as shown in figure is made to rotate about a vertical axis passing through O. There exists a uniform horizontal magnetic field of induction B = 1 Tesla if If the frame rotates (slowly) about 'O' with angular velocity directed along Z-axis having magnitude 4rad/s, the potential difference between O & B is
physics-General
physics-
There exists a uniform but time varying magnetic field B = a + bt normal to plane of paper in a cylindrical region as shown. A rectangular conducting loop is placed as shown. Induced emf in branches AB and BC are
There exists a uniform but time varying magnetic field B = a + bt normal to plane of paper in a cylindrical region as shown. A rectangular conducting loop is placed as shown. Induced emf in branches AB and BC are
physics-General
physics-
In given figure, a wire loop has been bent so that it has three segments: segment ab (a quarter circle), bc (a square corner), and ca (straight). Here are three choices for a magnetic field through the loop:
Where is in milliteslas and t is in seconds. If the induced current in the loop due to are respectively then
In given figure, a wire loop has been bent so that it has three segments: segment ab (a quarter circle), bc (a square corner), and ca (straight). Here are three choices for a magnetic field through the loop:
Where is in milliteslas and t is in seconds. If the induced current in the loop due to are respectively then
physics-General
physics-
Three wire loops and an observer are positioned as shown in the figure. From the observer's point of view, a current I flows counterclockwise in the middle loop, which is moving towards the observer with a velocity v. Loops A and B are stationary. This same observer would notice that
Three wire loops and an observer are positioned as shown in the figure. From the observer's point of view, a current I flows counterclockwise in the middle loop, which is moving towards the observer with a velocity v. Loops A and B are stationary. This same observer would notice that
physics-General
physics-
At t = 0 a charge q is at the origin and moving in the y-direction with velocity in a magnetic field that is for y > 0 out of page and given by into the page and given The charge's subsequent trajectory is shown in the sketch. From this information, we can deduce that
At t = 0 a charge q is at the origin and moving in the y-direction with velocity in a magnetic field that is for y > 0 out of page and given by into the page and given The charge's subsequent trajectory is shown in the sketch. From this information, we can deduce that
physics-General
physics-
A conducting bar rolls down a slope made of conducting rails. The bottom ends of the rails are connected by another conducting rail as shown in the figure. There is a uniform magnetic field B pointing upward. Due to the bar's motion, there is an induced current in the bar-rail circuit. What is the direction of the magnetic force on the bar?
A conducting bar rolls down a slope made of conducting rails. The bottom ends of the rails are connected by another conducting rail as shown in the figure. There is a uniform magnetic field B pointing upward. Due to the bar's motion, there is an induced current in the bar-rail circuit. What is the direction of the magnetic force on the bar?
physics-General
physics-
A conducting rod AC of length 4l is rotated about a point O in a uniform magnetic field directed into the paper. AO = l and OC = 3l. Then
A conducting rod AC of length 4l is rotated about a point O in a uniform magnetic field directed into the paper. AO = l and OC = 3l. Then
physics-General
physics-
A capacitor of capacitance 0.1 is connected to a battery of emf 8V as shown in the fig. Under steady state condition
A capacitor of capacitance 0.1 is connected to a battery of emf 8V as shown in the fig. Under steady state condition
physics-General
physics-
In the circuit shown in the figure, switches S1 and S2 have been closed for a long time
In the circuit shown in the figure, switches S1 and S2 have been closed for a long time
physics-General
physics-
In the circuit shown, the switch is shifted from position at t = 0. The switch was initially in position 1 since a long time. The graph between charge on capacitor C and time 't' is
In the circuit shown, the switch is shifted from position at t = 0. The switch was initially in position 1 since a long time. The graph between charge on capacitor C and time 't' is
physics-General
physics-
In the circuit shown, the charge on the 3 capacitor at steady state will be
In the circuit shown, the charge on the 3 capacitor at steady state will be
physics-General
physics-
The figure below shows four parallel plate capacitors : A, B, C and D. Each capacitor carries the same charge q and has the same plate area A. As suggested by the figure, the plates of capacitors A and C are separated by a distance d while those of B and D are separated by a distance 2d. Capacitors A and B are maintained in vacuum while capacitors C and D contain dielectrics with constant k = 5.
The figure below shows four parallel plate capacitors : A, B, C and D. Each capacitor carries the same charge q and has the same plate area A. As suggested by the figure, the plates of capacitors A and C are separated by a distance d while those of B and D are separated by a distance 2d. Capacitors A and B are maintained in vacuum while capacitors C and D contain dielectrics with constant k = 5.
physics-General