Maths-
General
Easy

Question

A Company’s profit from a certain product is represented by p(x)= -5x2+1 , 125x-5000, where x is the price of the product . Compare the growth in profits from x= 120 to 140 and from x= 140 to 160 , What do you notice ?

hintHint:

We are given 2 functions p(x) = -5x2 + 1 and p(x) = 125x - 5,000.
We will simply substitute the values of x given in the question in the 2 functions and compare the outputs for each.

The correct answer is: p(x) = -5x2 + 1 is a quadratic function and p(x) = 125x - 5,000 is a linear function.


    Step-by-step solution:-
    A). p(x) = -5x2 + 1

    Put x = 120- p(x) = -5(120)2 + 1 = -71,999
    Put x = 130- p(x) = -5(130)2 + 1 = -84,499
    Put x = 140- p(x) = -5(140)2 + 1 = -97,999
    Put x = 150- p(x) = -5(150)2 + 1 = -1,12,499
    Put x = 160- p(x) = -5(160)2 + 1 = -1,27,999

    ∴ we notice that the growth (negative growth) in profits-

    from x = 120 to 140 = -97,000 - (-71,999) = -97,999 + 71,999 = -26,000
    from x = 140 to 160 = -1,27,999 - (-97,999) = -1,27,999 + 97,999 = -30,000

    Hence, when price of the given product increases from 120 to 140, the profits decrease by 26,000 whereas when the price increasesfrom 140 to 160, the profits decrease by 30,000.
    First difference-
                                                                        d1 = p(130) - p(120) = -84,499 - (-71,999) = -12,500
                                                                        d2 = p(140) - p(130) = -97,999 - (-84,499) = -13,500
                                                                       d3 = p(150) - p(140) = -1,12,499 - (-97,999) = -14,500
                                                                     d4 = p(160) - p(150) = -1,27,999 - (-1,12,499) = -15,500
    Second difference-
                                                                                    d2 - d1 = -13,500 - (-12,500) = -1,000
                                                                                    d3 - d2 = -14,500 - (-13,500) = -1,000
                                                                                    d4 - d3 = -15,500 - (-14,500) = -1,000
    Since, the second difference for the given function is constant i.e. -1,000, the given function is a quadratic function.
    For every increase in the price, the profits will fall increasingly.
    B). p(x) = 125x - 5,000
                                                                             Put x = 120- p(x) = 125(120) - 5,000 = 10,000
                                                                             Put x = 130- p(x) = 125(130) - 5,000 = 11,250
                                                                             Put x = 140- p(x) = 125(140) - 5,000 = 12,500
                                                                             Put x = 150- p(x) = 125(150) - 5,000 = 13,750
                                                                             Put x = 160- p(x) = 125(160) - 5,000 = 15,000
    ∴ we notice that the growth in profits-
                                                                            from x = 120 to 140 = 12,500 - 10,000 = 2,500
                                                                            from x = 140 to 160 = 15,000 - 12,500 = 2,500
    Hence, when price of the given product increases from 120 to 140, the profits increase by 2,500 and when the price increases from 140 to 160, the profits increase by 2,500.
    First difference-
                                                                           d1 = p(130) - p(120) = 11,250 - 10,000 = 1,250
                                                                           d2 = p(140) - p(130) = 12,500 - 11,250 = 1,250
                                                                           d3 = p(150) - p(140) = 13,750 - 12,500 = 1,250
                                                                           d4 = p(160) - p(150) = 15,000 - 13,750 = 1,250
    Since, the first difference for the given function is constant i.e. 1,250, the given function is a Linear function.
    For every increase in the price, the profits will increase at a steady (constant) rate.
    Final Answer:-
    ∴ p(x) = -5x2 + 1 is a quadratic function and p(x) = 125x - 5,000 is a linear function.

    Related Questions to study

    General
    Maths-

    3 square root of x plus 22 end root equals 21 Solve for x

    3 square root of x plus 22 end root equals 21 Solve for x

    Maths-General
    General
    Maths-

    The formula d equals fraction numerator square root of 15 W end root over denominator 3.14 end fraction gives the diameter d, in inches, of a rope needed to lift a weight of w, intons. How much weight can be lifted with a rope that has a diameter of 4in?

    The formula d equals fraction numerator square root of 15 W end root over denominator 3.14 end fraction gives the diameter d, in inches, of a rope needed to lift a weight of w, intons. How much weight can be lifted with a rope that has a diameter of 4in?

    Maths-General
    General
    Maths-

    Describe how would you solve the equation . How is this solution method to be interpreted if the equation had been written in radical form instead?
     

    Describe how would you solve the equation . How is this solution method to be interpreted if the equation had been written in radical form instead?
     

    Maths-General
    parallel
    General
    Maths-

    Determine whether the data are best modelled by a linear , quadratic or exponential function ?

    Determine whether the data are best modelled by a linear , quadratic or exponential function ?

    Maths-General
    General
    Maths-

    Neil said that – 3 and 6 are the solutions to square root of 3 x plus 18 end root equals x. What error did Neil make?

    Neil said that – 3 and 6 are the solutions to square root of 3 x plus 18 end root equals x. What error did Neil make?

    Maths-General
    General
    Maths-

    The owner of a farming store tracks the cost of bubble wrap for packing pictures like the one shown. How can you use the data to estimate the cost of the bubble wrap for a picture with a length of 75 in.

    The owner of a farming store tracks the cost of bubble wrap for packing pictures like the one shown. How can you use the data to estimate the cost of the bubble wrap for a picture with a length of 75 in.

    Maths-General
    parallel
    General
    Maths-

    Determine whether the data are best modelled by a linear , quadratic or exponential function ?

    Determine whether the data are best modelled by a linear , quadratic or exponential function ?

    Maths-General
    General
    Maths-

    Do the data suggest a linear . quadratic or an exponential function ? Use regression to find a model for each data set.

    Do the data suggest a linear . quadratic or an exponential function ? Use regression to find a model for each data set.

    Maths-General
    General
    Maths-

    Determine whether a linear , quadratic or exponential function is the best model for the data in each table .

    Determine whether a linear , quadratic or exponential function is the best model for the data in each table .

    Maths-General
    parallel
    General
    Maths-

    Determine whether a linear , quadratic or exponential function is the best model for the data in each table .

    Determine whether a linear , quadratic or exponential function is the best model for the data in each table .

    Maths-General
    General
    Maths-

    Give an example of a radical equation that has no real solutions. Explain your reasoning

    Give an example of a radical equation that has no real solutions. Explain your reasoning

    Maths-General
    General
    Maths-

    Kiyo used a quadratic function to model data with constant first differences . Explain the error kiyo Made .

    Kiyo used a quadratic function to model data with constant first differences . Explain the error kiyo Made .

    Maths-General
    parallel
    General
    Maths-

    Determine whether a linear , quadratic or exponential function is the best model for the data in each table .

    Determine whether a linear , quadratic or exponential function is the best model for the data in each table .

    Maths-General
    General
    Maths-

    Why does solving a radical equation sometimes result in an extraneous solution?

    Why does solving a radical equation sometimes result in an extraneous solution?

    Maths-General
    General
    Maths-

    Solve the radical equation cube root of x minus 2 equals 7 Check for extraneous solutions

    Solve the radical equation cube root of x minus 2 equals 7 Check for extraneous solutions

    Maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.