Maths-
General
Easy

Question

Do the data suggest a linear . quadratic or an exponential function ? Use regression to find a model for each data set.

hintHint:

1. When the difference between 2 consecutive output values (y values) for a given constant change in the input values (x values) is constant. i.e. y(n)- y(n-1) is constant for any value of n, the function is known as a linear function.
2. Regression is a statistical tool used to find a model that can represent the relation between a given change in dependent variable (fraction numerator o u t p u t space v a l u e s over denominator y space v a l u e s end fraction) for a given change in independent variable (fraction numerator i n p u t space v a l u e s over denominator x space v a l u e s end fraction).
Linear Equation using regression can be represented as-
Y = a + bX, where-
a =fraction numerator space left square bracket left parenthesis capital sigma y right parenthesis left parenthesis capital sigma x squared right parenthesis space minus space left parenthesis capital sigma x right parenthesis space left parenthesis capital sigma x y right parenthesis right square bracket over denominator space left square bracket n left parenthesis capital sigma x squared right parenthesis space minus space left parenthesis capital sigma x right parenthesis squared right square bracket end fraction
b =fraction numerator space left square bracket n left parenthesis capital sigma x y right parenthesis space minus space left parenthesis capital sigma x right parenthesis space left parenthesis capital sigma y right parenthesis right square bracket over denominator space left square bracket n left parenthesis capital sigma x squared right parenthesis space minus space left parenthesis capital sigma x right parenthesis squared right square bracket end fraction

The correct answer is: The given function is a linear function and using Regression, the given function can be modelled into the equation- Y = 2.48X - 19.96.


    Step-by-step solution:-
    From the given table, we observe the following readings-

    x1 = 0, y1 = 100;
    x2 = 1, y2 = 89.5;
    x3 = 2, y3 = 78.9;
    x4 = 3, y4 = 68.4;
    x5 = 4, y5 = 57.8
    a). Difference between 2 consecutive x values-
                                                                                                    dx1 = x2 - x1 = 1 - 0 = 1
                                                                                                    dx2 = x3 - x2 = 2 - 1 = 1
                                                                                                    dx3 = x4 - x3 = 3 - 2 = 1
                                                                                                    dx4 = x5 - x4 = 4 - 3 = 1
    Difference between 2 consecutive y values-
                                                                                            dy1 = y2 - y1 = 89.5 - 100 = -10.5
                                                                                            dy2 = y3 - y2 = 78.9 - 89.5 = -10.6
                                                                                            dy3 = y4 - y3 = 68.4 - 78.9 = -10.5
                                                                                            dy4 = y5 - y4 = 57.8 - 68.4 = -10.6
    We observe that the difference for every consecutive x values is constant i.e. 1 and for y values the difference is almost constant i.e. -10.5.
    Hence, the given function is a linear function.
    Using Linear Regression formula-
    Y = a + bX, where-
                                                                                            a = fraction numerator left square bracket left parenthesis capital sigma y right parenthesis left parenthesis capital sigma x squared right parenthesis space minus space left parenthesis capital sigma x right parenthesis space left parenthesis capital sigma x y right parenthesis right square bracket space over denominator left square bracket n left parenthesis capital sigma x squared right parenthesis space minus space left parenthesis capital sigma x right parenthesis squared right square bracket end fraction
                                                                                    ∴ a = fraction numerator left square bracket left parenthesis negative 75 right parenthesis left parenthesis 30 right parenthesis space minus space left parenthesis 10 right parenthesis left parenthesis negative 125.2 right parenthesis right square bracket over denominator space left square bracket 5 left parenthesis 30 right parenthesis space minus space left parenthesis 10 right parenthesis 2 right square bracket space end fraction.......................... (As per adjacent table)
                                                                                             ∴ a = fraction numerator left parenthesis negative 2 comma 250 space plus space 1 comma 252 right parenthesis over denominator space left parenthesis 150 space minus space 100 right parenthesis end fraction
                                                                                                     ∴ a =fraction numerator space minus 998 space over denominator 50 end fraction
                                                                                                      ∴ a = -19.96
                                                                                              b = fraction numerator left square bracket n left parenthesis capital sigma x y right parenthesis space minus space left parenthesis capital sigma x right parenthesis space left parenthesis capital sigma y right parenthesis right square bracket space over denominator left square bracket n left parenthesis capital sigma x squared right parenthesis space minus space left parenthesis capital sigma x right parenthesis squared right square bracket end fraction
                                                                                        ∴ b =fraction numerator space left square bracket 5 left parenthesis negative 125.2 right parenthesis space minus space left parenthesis 10 right parenthesis left parenthesis negative 75 right parenthesis right square bracket over denominator space left square bracket 5 left parenthesis 30 right parenthesis space minus space left parenthesis 10 right parenthesis squared right square bracket end fraction
                                                                                          ∴ b = (-626 + 750)/ (150 - 100)
                                                                                                        ∴ b = fraction numerator 124 over denominator space 50 end fraction
                                                                                                        ∴ b = 2.48
    ∴ The Linear Equation is-
                                                                                                          Y = a + bX
                                                                                                 ∴ Y = -19.96 + 2.48X
                                                                                                  ∴ Y = 2.48X - 19.96
    Final Answer:-
    ∴ The given function is a linear function and using Regression, the given function can be modelled into the equation- Y = 2.48X - 19.96.

    Related Questions to study

    General
    Maths-

    Determine whether a linear , quadratic or exponential function is the best model for the data in each table .

    Determine whether a linear , quadratic or exponential function is the best model for the data in each table .

    Maths-General
    General
    Maths-

    Determine whether a linear , quadratic or exponential function is the best model for the data in each table .

    Determine whether a linear , quadratic or exponential function is the best model for the data in each table .

    Maths-General
    General
    Maths-

    Give an example of a radical equation that has no real solutions. Explain your reasoning

    Give an example of a radical equation that has no real solutions. Explain your reasoning

    Maths-General
    parallel
    General
    Maths-

    Kiyo used a quadratic function to model data with constant first differences . Explain the error kiyo Made .

    Kiyo used a quadratic function to model data with constant first differences . Explain the error kiyo Made .

    Maths-General
    General
    Maths-

    Determine whether a linear , quadratic or exponential function is the best model for the data in each table .

    Determine whether a linear , quadratic or exponential function is the best model for the data in each table .

    Maths-General
    General
    Maths-

    Why does solving a radical equation sometimes result in an extraneous solution?

    Why does solving a radical equation sometimes result in an extraneous solution?

    Maths-General
    parallel
    General
    Maths-

    Solve the radical equation cube root of x minus 2 equals 7 Check for extraneous solutions

    Solve the radical equation cube root of x minus 2 equals 7 Check for extraneous solutions

    Maths-General
    General
    Maths-

    How can you solve equations that include radicals or rational exponents?

    How can you solve equations that include radicals or rational exponents?

    Maths-General
    General
    Maths-

    The average rate of change of a function is less from x= 1 to x= 4 than from x= 5 to x= 8 . What type of function could it be? Explain.

    The average rate of change of a function is less from x= 1 to x= 4 than from x= 5 to x= 8 . What type of function could it be? Explain.

    Maths-General
    parallel
    General
    Maths-

    Determine whether a linear , quadratic or exponential function is the best model for the data in each table .

    Determine whether a linear , quadratic or exponential function is the best model for the data in each table .

    Maths-General
    General
    Maths-

    A doctor calculates a particular dose of medicine is appropriate for an individual whose BSA is less than 1.8. If the mass of an individual is 75 Kg, how many cm can he/she be for the dose to be appropriate?

    A doctor calculates a particular dose of medicine is appropriate for an individual whose BSA is less than 1.8. If the mass of an individual is 75 Kg, how many cm can he/she be for the dose to be appropriate?

    Maths-General
    General
    Maths-

    Do the data suggest a linear . quadratic or an exponential function ? Use regression to find a model for each data set.

    Do the data suggest a linear . quadratic or an exponential function ? Use regression to find a model for each data set.

    Maths-General
    parallel
    General
    Maths-

    The body surface area (BSA) of a human being is used to determine doses of medication. The formula for finding BSA is BSA = square root of fraction numerator H cross times M over denominator 3600 end fraction end root ,where H is the height in centimeters and M is the mass in kilograms. A doctor calculates a particular dose of medicine for a patient whose BSA is less than 1.9. If the patient is 160 cm tall, what must the mass of the person be for the dose to be appropriate?

    The body surface area (BSA) of a human being is used to determine doses of medication. The formula for finding BSA is BSA = square root of fraction numerator H cross times M over denominator 3600 end fraction end root ,where H is the height in centimeters and M is the mass in kilograms. A doctor calculates a particular dose of medicine for a patient whose BSA is less than 1.9. If the patient is 160 cm tall, what must the mass of the person be for the dose to be appropriate?

    Maths-General
    General
    Maths-

    A Saving account has a balance of $1 . Savings plan A will add $1000 to an account each month , and plan B will double the amount each month ?
    a. Which plan is better in the short run ? for How long , Explain.
    b. Which plan is better in the long run ? Explain.

    A Saving account has a balance of $1 . Savings plan A will add $1000 to an account each month , and plan B will double the amount each month ?
    a. Which plan is better in the short run ? for How long , Explain.
    b. Which plan is better in the long run ? Explain.

    Maths-General
    General
    Maths-

    How can you determine whether a linear , exponential or quadratic function best models the data ?

    How can you determine whether a linear , exponential or quadratic function best models the data ?

    Maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.