Physics-
General
Easy

Question

A copper wire of length 4 m and area of cross-section 1.2 cm2 is stretched with a force of  8 cross times 10 cubed straight N If young's modulus for copper is 1.2 cross times 10 to the power of 11 straight N over straight m squared  What will be the length increase of the wire?

  1. 1.33 mm
  2. 1.33 cm
  3. 2.66 mm
  4. 2.66 cm

The correct answer is: 1.33 mm

Related Questions to study

General
Maths-

Lt subscript y not stretchy rightwards arrow 0 end subscript space fraction numerator sin begin display style space end style left parenthesis a plus b x right parenthesis minus sin space left parenthesis a minus b x right parenthesis over denominator x end fraction

We can only apply the L’Hospital’s rule if the direct substitution returns an indeterminate form, that means 0 over 0 space o r space fraction numerator plus-or-minus infinity over denominator plus-or-minus infinity end fraction.

Lt subscript y not stretchy rightwards arrow 0 end subscript space fraction numerator sin begin display style space end style left parenthesis a plus b x right parenthesis minus sin space left parenthesis a minus b x right parenthesis over denominator x end fraction

Maths-General

We can only apply the L’Hospital’s rule if the direct substitution returns an indeterminate form, that means 0 over 0 space o r space fraction numerator plus-or-minus infinity over denominator plus-or-minus infinity end fraction.

General
physics-

What will be the nature of change in internal energy in case of processes shown below?

What will be the nature of change in internal energy in case of processes shown below?

physics-General
General
maths-

Lt subscript x plus x over 2 end subscript space fraction numerator cos begin display style space end style x over denominator x minus pi over 2 end fraction

Lt subscript x plus x over 2 end subscript space fraction numerator cos begin display style space end style x over denominator x minus pi over 2 end fraction

maths-General
parallel
General
physics-

Young's modulus of rubber is  10 to the power of 4 straight N over straight m squared and area of cross section is 2 cm2 if force of 2 cross times 10 to the power of 5 dyne is applied along its length then its initial length L becomes….

Young's modulus of rubber is  10 to the power of 4 straight N over straight m squared and area of cross section is 2 cm2 if force of 2 cross times 10 to the power of 5 dyne is applied along its length then its initial length L becomes….

physics-General
General
Maths-

L t subscript x not stretchy rightwards arrow 1 end subscript fraction numerator log subscript e superscript x over denominator x minus 1 end fraction

We can only apply the L’Hospital’s rule if the direct substitution returns an indeterminate form, that means 0 over 0 space o r space fraction numerator plus-or-minus infinity over denominator plus-or-minus infinity end fraction.

L t subscript x not stretchy rightwards arrow 1 end subscript fraction numerator log subscript e superscript x over denominator x minus 1 end fraction

Maths-General

We can only apply the L’Hospital’s rule if the direct substitution returns an indeterminate form, that means 0 over 0 space o r space fraction numerator plus-or-minus infinity over denominator plus-or-minus infinity end fraction.

General
Maths-

L t subscript x not stretchy rightwards arrow 0 end subscript fraction numerator e to the power of x minus sin space x minus 1 over denominator x end fraction

We can only apply the L’Hospital’s rule if the direct substitution returns an indeterminate form, that means fraction numerator 0 over denominator 0 space end fraction space o r space fraction numerator plus-or-minus infinity over denominator plus-or-minus infinity end fraction'

L t subscript x not stretchy rightwards arrow 0 end subscript fraction numerator e to the power of x minus sin space x minus 1 over denominator x end fraction

Maths-General

We can only apply the L’Hospital’s rule if the direct substitution returns an indeterminate form, that means fraction numerator 0 over denominator 0 space end fraction space o r space fraction numerator plus-or-minus infinity over denominator plus-or-minus infinity end fraction'

parallel
General
Maths-

Lt subscript x not stretchy rightwards arrow 4 end subscript fraction numerator a to the power of x minus 1 over denominator b to the power of x minus 1 end fraction left parenthesis a greater than 0 comma b greater than 0 comma b not equal to 1 right parenthesis

We can only apply the L’Hospital’s rule if the direct substitution returns an indeterminate form, that means 0 over 0 or fraction numerator plus-or-minus infinity over denominator plus-or-minus infinity end fraction.

Lt subscript x not stretchy rightwards arrow 4 end subscript fraction numerator a to the power of x minus 1 over denominator b to the power of x minus 1 end fraction left parenthesis a greater than 0 comma b greater than 0 comma b not equal to 1 right parenthesis

Maths-General

We can only apply the L’Hospital’s rule if the direct substitution returns an indeterminate form, that means 0 over 0 or fraction numerator plus-or-minus infinity over denominator plus-or-minus infinity end fraction.

General
physics-

PV versus T graph of equal masses of H subscript 2 end subscript , He and C O subscript 2 end subscript is shown in figure Choose the correct alternative

PV versus T graph of equal masses of H subscript 2 end subscript , He and C O subscript 2 end subscript is shown in figure Choose the correct alternative

physics-General
General
maths-

If pi less than alpha less than 2 pi then fraction numerator 1 over denominator S i n invisible function application alpha minus square root of c o t to the power of 2 end exponent invisible function application alpha minus c o s to the power of 2 end exponent invisible function application alpha end root end fraction equals

If pi less than alpha less than 2 pi then fraction numerator 1 over denominator S i n invisible function application alpha minus square root of c o t to the power of 2 end exponent invisible function application alpha minus c o s to the power of 2 end exponent invisible function application alpha end root end fraction equals

maths-General
parallel
General
Maths-

Lt subscript x not stretchy rightwards arrow 0 end subscript space fraction numerator e to the power of x minus 1 over denominator square root of 1 plus x end root minus 1 end fraction

We can only apply the L’Hospital’s rule if the direct substitution returns an indeterminate form, that means fraction numerator 0 over denominator 0 space end fraction space o r space fraction numerator plus-or-minus infinity over denominator plus-or-minus infinity end fraction .

Lt subscript x not stretchy rightwards arrow 0 end subscript space fraction numerator e to the power of x minus 1 over denominator square root of 1 plus x end root minus 1 end fraction

Maths-General

We can only apply the L’Hospital’s rule if the direct substitution returns an indeterminate form, that means fraction numerator 0 over denominator 0 space end fraction space o r space fraction numerator plus-or-minus infinity over denominator plus-or-minus infinity end fraction .

General
Maths-

L t subscript x not stretchy rightwards arrow 0 end subscript fraction numerator square root of x plus 1 end root minus 1 over denominator x end fraction

L t subscript x not stretchy rightwards arrow 0 end subscript fraction numerator square root of x plus 1 end root minus 1 over denominator x end fraction

Maths-General
General
maths-

If X equals S i n invisible function application 1 semicolon Y equals S i n invisible function application 2 semicolon Z equals S i n invisible function application 3  then

If X equals S i n invisible function application 1 semicolon Y equals S i n invisible function application 2 semicolon Z equals S i n invisible function application 3  then

maths-General
parallel
General
Maths-

Lt subscript x not stretchy rightwards arrow 4 end subscript space fraction numerator square root of x minus 2 over denominator x minus 4 end fraction

We can only apply the L’Hospital’s rule if the direct substitution returns an indeterminate form, that means 0 over 0 or fraction numerator plus-or-minus infinity over denominator plus-or-minus infinity end fraction.

Lt subscript x not stretchy rightwards arrow 4 end subscript space fraction numerator square root of x minus 2 over denominator x minus 4 end fraction

Maths-General

We can only apply the L’Hospital’s rule if the direct substitution returns an indeterminate form, that means 0 over 0 or fraction numerator plus-or-minus infinity over denominator plus-or-minus infinity end fraction.

General
Maths-

fraction numerator s i n invisible function application 3 theta over denominator 1 plus 2 c o s invisible function application 2 theta end fraction equals

Hence Choice 4 is correct

fraction numerator s i n invisible function application 3 theta over denominator 1 plus 2 c o s invisible function application 2 theta end fraction equals

Maths-General

Hence Choice 4 is correct

General
Maths-

Lt subscript x not stretchy rightwards arrow 1 end subscript space open square brackets fraction numerator x minus 1 over denominator x squared minus x end fraction minus fraction numerator x minus 1 over denominator x cubed minus 3 x squared plus 2 x end fraction close square brackets

We can only apply the L’Hospital’s rule if the direct substitution returns an indeterminate form, that means 0 over 0 or fraction numerator plus-or-minus infinity over denominator plus-or-minus infinity end fraction.

Lt subscript x not stretchy rightwards arrow 1 end subscript space open square brackets fraction numerator x minus 1 over denominator x squared minus x end fraction minus fraction numerator x minus 1 over denominator x cubed minus 3 x squared plus 2 x end fraction close square brackets

Maths-General

We can only apply the L’Hospital’s rule if the direct substitution returns an indeterminate form, that means 0 over 0 or fraction numerator plus-or-minus infinity over denominator plus-or-minus infinity end fraction.

parallel

card img

With Turito Academy.

card img

With Turito Foundation.

card img

Get an Expert Advice From Turito.

Turito Academy

card img

With Turito Academy.

Test Prep

card img

With Turito Foundation.