Maths-
General
Easy
Question
A weight of 10 N is hanged by two ropes as shown in fig., the tensions
and
are

The correct answer is: 
According to given fig.,
..…(i)
and
..…(ii)
Solving (i) and (ii), we get
.
Related Questions to study
maths-
If f(x), f (x), j (x) are continuous on [a, b] and differentiable on (a, b)
(a, b) then 
If f(x), f (x), j (x) are continuous on [a, b] and differentiable on (a, b)
(a, b) then 
maths-General
maths-
Statement - I : An equation of a common tangent to the parabola
ellipse 
Statement - II : If the line
(m
0 ) is a common tangent to the parabola 
Statement - I : An equation of a common tangent to the parabola
ellipse 
Statement - II : If the line
(m
0 ) is a common tangent to the parabola 
maths-General
chemistry-
Equilibrium constant of some reactions are given as under
Equilibrium constant of some reactions are given as under
chemistry-General
physics-
Two concentric shells of masses
and
are having radii
and
. Which of the following is the correct expression for the gravitational field at a distance r :–

Two concentric shells of masses
and
are having radii
and
. Which of the following is the correct expression for the gravitational field at a distance r :–

physics-General
physics-
Potential energy and kinetic energy of a two-particle system are shown by KE and PE. respectively in figure. This system is bound at :

Potential energy and kinetic energy of a two-particle system are shown by KE and PE. respectively in figure. This system is bound at :

physics-General
physics-
Find the distance between centre of gravity and centre of mass of a two-particle system attached to the ends of a light rod. Each particle has same mass. Length of the rod is R, where R is the radius of Earth

Find the distance between centre of gravity and centre of mass of a two-particle system attached to the ends of a light rod. Each particle has same mass. Length of the rod is R, where R is the radius of Earth

physics-General
physics-
A bicycle has pedal rods of length 16 cm connected to a sprocketed disc of radius 10 cm. The bicycle wheels are 70 cm in diameter and the chain runs over a gear of radius 4 cm. The speed of the cycle is constant and the cyclist applies 100 N force that is always perpendicular to the pedal rod, as shown in the figure. Assume tension in the lower part of chain is negligible. The cyclist is peddling at a constant rate of two revolutions per second. Assume that the force applied by other foot is zero when one foot is exerting 100 N force. Neglect friction within cycle parts & the rolling friction. The net force of the friction on the rear wheel due to the road is :

A bicycle has pedal rods of length 16 cm connected to a sprocketed disc of radius 10 cm. The bicycle wheels are 70 cm in diameter and the chain runs over a gear of radius 4 cm. The speed of the cycle is constant and the cyclist applies 100 N force that is always perpendicular to the pedal rod, as shown in the figure. Assume tension in the lower part of chain is negligible. The cyclist is peddling at a constant rate of two revolutions per second. Assume that the force applied by other foot is zero when one foot is exerting 100 N force. Neglect friction within cycle parts & the rolling friction. The net force of the friction on the rear wheel due to the road is :

physics-General
chemistry-
In a mixture of A and B, components show negative deviation when -
In a mixture of A and B, components show negative deviation when -
chemistry-General
physics-
A bicycle has pedal rods of length 16 cm connected to a sprocketed disc of radius 10 cm. The bicycle wheels are 70 cm in diameter and the chain runs over a gear of radius 4 cm. The speed of the cycle is constant and the cyclist applies 100 N force that is always perpendicular to the pedal rod, as shown in the figure. Assume tension in the lower part of chain is negligible. The cyclist is peddling at a constant rate of two revolutions per second. Assume that the force applied by other foot is zero when one foot is exerting 100 N force. Neglect friction within cycle parts & the rolling friction. The speed of the bicycle is

A bicycle has pedal rods of length 16 cm connected to a sprocketed disc of radius 10 cm. The bicycle wheels are 70 cm in diameter and the chain runs over a gear of radius 4 cm. The speed of the cycle is constant and the cyclist applies 100 N force that is always perpendicular to the pedal rod, as shown in the figure. Assume tension in the lower part of chain is negligible. The cyclist is peddling at a constant rate of two revolutions per second. Assume that the force applied by other foot is zero when one foot is exerting 100 N force. Neglect friction within cycle parts & the rolling friction. The speed of the bicycle is

physics-General
physics-
A bicycle has pedal rods of length 16 cm connected to a sprocketed disc of radius 10 cm. The bicycle wheels are 70 cm in diameter and the chain runs over a gear of radius 4 cm. The speed of the cycle is constant and the cyclist applies 100 N force that is always perpendicular to the pedal rod, as shown in the figure. Assume tension in the lower part of chain is negligible. The cyclist is peddling at a constant rate of two revolutions per second. Assume that the force applied by other foot is zero when one foot is exerting 100 N force. Neglect friction within cycle parts & the rolling friction. The power delivered by the cyclist is equal to

A bicycle has pedal rods of length 16 cm connected to a sprocketed disc of radius 10 cm. The bicycle wheels are 70 cm in diameter and the chain runs over a gear of radius 4 cm. The speed of the cycle is constant and the cyclist applies 100 N force that is always perpendicular to the pedal rod, as shown in the figure. Assume tension in the lower part of chain is negligible. The cyclist is peddling at a constant rate of two revolutions per second. Assume that the force applied by other foot is zero when one foot is exerting 100 N force. Neglect friction within cycle parts & the rolling friction. The power delivered by the cyclist is equal to

physics-General
physics-
A bicycle has pedal rods of length 16 cm connected to a sprocketed disc of radius 10 cm. The bicycle wheels are 70 cm in diameter and the chain runs over a gear of radius 4 cm. The speed of the cycle is constant and the cyclist applies 100 N force that is always perpendicular to the pedal rod, as shown in the figure. Assume tension in the lower part of chain is negligible. The cyclist is peddling at a constant rate of two revolutions per second. Assume that the force applied by other foot is zero when one foot is exerting 100 N force. Neglect friction within cycle parts & the rolling friction. Net torque on the rear wheel of the bicycle is equal to

A bicycle has pedal rods of length 16 cm connected to a sprocketed disc of radius 10 cm. The bicycle wheels are 70 cm in diameter and the chain runs over a gear of radius 4 cm. The speed of the cycle is constant and the cyclist applies 100 N force that is always perpendicular to the pedal rod, as shown in the figure. Assume tension in the lower part of chain is negligible. The cyclist is peddling at a constant rate of two revolutions per second. Assume that the force applied by other foot is zero when one foot is exerting 100 N force. Neglect friction within cycle parts & the rolling friction. Net torque on the rear wheel of the bicycle is equal to

physics-General
physics-
A bicycle has pedal rods of length 16 cm connected to a sprocketed disc of radius 10 cm. The bicycle wheels are 70 cm in diameter and the chain runs over a gear of radius 4 cm. The speed of the cycle is constant, and the cyclist applies 100 N force that is always perpendicular to the pedal rod, as shown in the figure. Assume tension in the lower part of chain is negligible. The cyclist is peddling at a constant rate of two revolutions per second. Assume that the force applied by other foot is zero when one foot is exerting 100 N force. Neglect friction within cycle parts & the rolling friction. The tension in the upper portion of the chain is equal to

A bicycle has pedal rods of length 16 cm connected to a sprocketed disc of radius 10 cm. The bicycle wheels are 70 cm in diameter and the chain runs over a gear of radius 4 cm. The speed of the cycle is constant, and the cyclist applies 100 N force that is always perpendicular to the pedal rod, as shown in the figure. Assume tension in the lower part of chain is negligible. The cyclist is peddling at a constant rate of two revolutions per second. Assume that the force applied by other foot is zero when one foot is exerting 100 N force. Neglect friction within cycle parts & the rolling friction. The tension in the upper portion of the chain is equal to

physics-General
physics-
A uniform bar of length 6 a & mass 8m lies on a smooth horizontal table. Two-point masses m & 2 m moving in the same horizontal plane with speeds 2 v and v respectively strike the bar as shown in the figure & stick to the bar after collision. Total kinetic energy of the system, just after the collision is

A uniform bar of length 6 a & mass 8m lies on a smooth horizontal table. Two-point masses m & 2 m moving in the same horizontal plane with speeds 2 v and v respectively strike the bar as shown in the figure & stick to the bar after collision. Total kinetic energy of the system, just after the collision is

physics-General
physics-
A uniform bar of length 6 a & mass 8m lies on a smooth horizontal table. Two-point masses m & 2 m moving in the same horizontal plane with speeds 2 v and v respectively strike the bar as shown in the figure & stick to the bar after collision. Angular velocity of the rod about centre of mass of the system is

A uniform bar of length 6 a & mass 8m lies on a smooth horizontal table. Two-point masses m & 2 m moving in the same horizontal plane with speeds 2 v and v respectively strike the bar as shown in the figure & stick to the bar after collision. Angular velocity of the rod about centre of mass of the system is

physics-General
physics-
A uniform bar of length 6 a & mass 8m lies on a smooth horizontal table. Two-point masses m & 2 m moving in the same horizontal plane with speeds 2 v and v respectively strike the bar as shown in the figure & stick to the bar after collision. Velocity of the centre of mass of the system is

A uniform bar of length 6 a & mass 8m lies on a smooth horizontal table. Two-point masses m & 2 m moving in the same horizontal plane with speeds 2 v and v respectively strike the bar as shown in the figure & stick to the bar after collision. Velocity of the centre of mass of the system is

physics-General