Maths-
General
Easy
Question
Statement - I : An equation of a common tangent to the parabola ellipse
Statement - II : If the line (m 0 ) is a common tangent to the parabola
- Statement I is true , statement II is true,
- Statement I is true, statement II is false
- Statement I is false, statement II is true
- Statement I is true, statement II is true, statement II is a correct explanation for statement I
The correct answer is: Statement I is false, statement II is true
Related Questions to study
chemistry-
Equilibrium constant of some reactions are given as under
Equilibrium constant of some reactions are given as under
chemistry-General
physics-
Two concentric shells of masses and are having radii and . Which of the following is the correct expression for the gravitational field at a distance r :–
Two concentric shells of masses and are having radii and . Which of the following is the correct expression for the gravitational field at a distance r :–
physics-General
physics-
Potential energy and kinetic energy of a two-particle system are shown by KE and PE. respectively in figure. This system is bound at :
Potential energy and kinetic energy of a two-particle system are shown by KE and PE. respectively in figure. This system is bound at :
physics-General
physics-
Find the distance between centre of gravity and centre of mass of a two-particle system attached to the ends of a light rod. Each particle has same mass. Length of the rod is R, where R is the radius of Earth
Find the distance between centre of gravity and centre of mass of a two-particle system attached to the ends of a light rod. Each particle has same mass. Length of the rod is R, where R is the radius of Earth
physics-General
physics-
A bicycle has pedal rods of length 16 cm connected to a sprocketed disc of radius 10 cm. The bicycle wheels are 70 cm in diameter and the chain runs over a gear of radius 4 cm. The speed of the cycle is constant and the cyclist applies 100 N force that is always perpendicular to the pedal rod, as shown in the figure. Assume tension in the lower part of chain is negligible. The cyclist is peddling at a constant rate of two revolutions per second. Assume that the force applied by other foot is zero when one foot is exerting 100 N force. Neglect friction within cycle parts & the rolling friction. The net force of the friction on the rear wheel due to the road is :
A bicycle has pedal rods of length 16 cm connected to a sprocketed disc of radius 10 cm. The bicycle wheels are 70 cm in diameter and the chain runs over a gear of radius 4 cm. The speed of the cycle is constant and the cyclist applies 100 N force that is always perpendicular to the pedal rod, as shown in the figure. Assume tension in the lower part of chain is negligible. The cyclist is peddling at a constant rate of two revolutions per second. Assume that the force applied by other foot is zero when one foot is exerting 100 N force. Neglect friction within cycle parts & the rolling friction. The net force of the friction on the rear wheel due to the road is :
physics-General
chemistry-
In a mixture of A and B, components show negative deviation when -
In a mixture of A and B, components show negative deviation when -
chemistry-General
physics-
A bicycle has pedal rods of length 16 cm connected to a sprocketed disc of radius 10 cm. The bicycle wheels are 70 cm in diameter and the chain runs over a gear of radius 4 cm. The speed of the cycle is constant and the cyclist applies 100 N force that is always perpendicular to the pedal rod, as shown in the figure. Assume tension in the lower part of chain is negligible. The cyclist is peddling at a constant rate of two revolutions per second. Assume that the force applied by other foot is zero when one foot is exerting 100 N force. Neglect friction within cycle parts & the rolling friction. The speed of the bicycle is
A bicycle has pedal rods of length 16 cm connected to a sprocketed disc of radius 10 cm. The bicycle wheels are 70 cm in diameter and the chain runs over a gear of radius 4 cm. The speed of the cycle is constant and the cyclist applies 100 N force that is always perpendicular to the pedal rod, as shown in the figure. Assume tension in the lower part of chain is negligible. The cyclist is peddling at a constant rate of two revolutions per second. Assume that the force applied by other foot is zero when one foot is exerting 100 N force. Neglect friction within cycle parts & the rolling friction. The speed of the bicycle is
physics-General
physics-
A bicycle has pedal rods of length 16 cm connected to a sprocketed disc of radius 10 cm. The bicycle wheels are 70 cm in diameter and the chain runs over a gear of radius 4 cm. The speed of the cycle is constant and the cyclist applies 100 N force that is always perpendicular to the pedal rod, as shown in the figure. Assume tension in the lower part of chain is negligible. The cyclist is peddling at a constant rate of two revolutions per second. Assume that the force applied by other foot is zero when one foot is exerting 100 N force. Neglect friction within cycle parts & the rolling friction. The power delivered by the cyclist is equal to
A bicycle has pedal rods of length 16 cm connected to a sprocketed disc of radius 10 cm. The bicycle wheels are 70 cm in diameter and the chain runs over a gear of radius 4 cm. The speed of the cycle is constant and the cyclist applies 100 N force that is always perpendicular to the pedal rod, as shown in the figure. Assume tension in the lower part of chain is negligible. The cyclist is peddling at a constant rate of two revolutions per second. Assume that the force applied by other foot is zero when one foot is exerting 100 N force. Neglect friction within cycle parts & the rolling friction. The power delivered by the cyclist is equal to
physics-General
physics-
A bicycle has pedal rods of length 16 cm connected to a sprocketed disc of radius 10 cm. The bicycle wheels are 70 cm in diameter and the chain runs over a gear of radius 4 cm. The speed of the cycle is constant and the cyclist applies 100 N force that is always perpendicular to the pedal rod, as shown in the figure. Assume tension in the lower part of chain is negligible. The cyclist is peddling at a constant rate of two revolutions per second. Assume that the force applied by other foot is zero when one foot is exerting 100 N force. Neglect friction within cycle parts & the rolling friction. Net torque on the rear wheel of the bicycle is equal to
A bicycle has pedal rods of length 16 cm connected to a sprocketed disc of radius 10 cm. The bicycle wheels are 70 cm in diameter and the chain runs over a gear of radius 4 cm. The speed of the cycle is constant and the cyclist applies 100 N force that is always perpendicular to the pedal rod, as shown in the figure. Assume tension in the lower part of chain is negligible. The cyclist is peddling at a constant rate of two revolutions per second. Assume that the force applied by other foot is zero when one foot is exerting 100 N force. Neglect friction within cycle parts & the rolling friction. Net torque on the rear wheel of the bicycle is equal to
physics-General
physics-
A bicycle has pedal rods of length 16 cm connected to a sprocketed disc of radius 10 cm. The bicycle wheels are 70 cm in diameter and the chain runs over a gear of radius 4 cm. The speed of the cycle is constant, and the cyclist applies 100 N force that is always perpendicular to the pedal rod, as shown in the figure. Assume tension in the lower part of chain is negligible. The cyclist is peddling at a constant rate of two revolutions per second. Assume that the force applied by other foot is zero when one foot is exerting 100 N force. Neglect friction within cycle parts & the rolling friction. The tension in the upper portion of the chain is equal to
A bicycle has pedal rods of length 16 cm connected to a sprocketed disc of radius 10 cm. The bicycle wheels are 70 cm in diameter and the chain runs over a gear of radius 4 cm. The speed of the cycle is constant, and the cyclist applies 100 N force that is always perpendicular to the pedal rod, as shown in the figure. Assume tension in the lower part of chain is negligible. The cyclist is peddling at a constant rate of two revolutions per second. Assume that the force applied by other foot is zero when one foot is exerting 100 N force. Neglect friction within cycle parts & the rolling friction. The tension in the upper portion of the chain is equal to
physics-General
physics-
A uniform bar of length 6 a & mass 8m lies on a smooth horizontal table. Two-point masses m & 2 m moving in the same horizontal plane with speeds 2 v and v respectively strike the bar as shown in the figure & stick to the bar after collision. Total kinetic energy of the system, just after the collision is
A uniform bar of length 6 a & mass 8m lies on a smooth horizontal table. Two-point masses m & 2 m moving in the same horizontal plane with speeds 2 v and v respectively strike the bar as shown in the figure & stick to the bar after collision. Total kinetic energy of the system, just after the collision is
physics-General
physics-
A uniform bar of length 6 a & mass 8m lies on a smooth horizontal table. Two-point masses m & 2 m moving in the same horizontal plane with speeds 2 v and v respectively strike the bar as shown in the figure & stick to the bar after collision. Angular velocity of the rod about centre of mass of the system is
A uniform bar of length 6 a & mass 8m lies on a smooth horizontal table. Two-point masses m & 2 m moving in the same horizontal plane with speeds 2 v and v respectively strike the bar as shown in the figure & stick to the bar after collision. Angular velocity of the rod about centre of mass of the system is
physics-General
physics-
A uniform bar of length 6 a & mass 8m lies on a smooth horizontal table. Two-point masses m & 2 m moving in the same horizontal plane with speeds 2 v and v respectively strike the bar as shown in the figure & stick to the bar after collision. Velocity of the centre of mass of the system is
A uniform bar of length 6 a & mass 8m lies on a smooth horizontal table. Two-point masses m & 2 m moving in the same horizontal plane with speeds 2 v and v respectively strike the bar as shown in the figure & stick to the bar after collision. Velocity of the centre of mass of the system is
physics-General
physics-
A uniform triangular plate ABC of moment of mass m and inertia I (about an axis passing through A and perpendicular to plane of the plate) can rotate freely in the vertical plane about point 'A' as shown in figure. The plate is released from the position shown in the figure. Line AB is horizontal. The acceleration of centre of mass just after the release of plate is :
A uniform triangular plate ABC of moment of mass m and inertia I (about an axis passing through A and perpendicular to plane of the plate) can rotate freely in the vertical plane about point 'A' as shown in figure. The plate is released from the position shown in the figure. Line AB is horizontal. The acceleration of centre of mass just after the release of plate is :
physics-General
physics-
Two identical uniform solid spherical balls A & B of mass m each are placed on a fixed wedge as shown in figure. Ball B is kept at rest and it is released just before two balls collides. Ball A rolls down without slipping on inclined plane & collide elastically with ball B. The kinetic energy of ball A just after the collision with ball B is :
Two identical uniform solid spherical balls A & B of mass m each are placed on a fixed wedge as shown in figure. Ball B is kept at rest and it is released just before two balls collides. Ball A rolls down without slipping on inclined plane & collide elastically with ball B. The kinetic energy of ball A just after the collision with ball B is :
physics-General