Maths-
General
Easy
Question
The correct answer is:
.
Related Questions to study
chemistry-
The products (A) and (B) are:
The products (A) and (B) are:
chemistry-General
maths-
If w is a complex cube root of unity, then the matrix A = is a-
If w is a complex cube root of unity, then the matrix A = is a-
maths-General
maths-
Matrix [1 2] is equal to-
Matrix [1 2] is equal to-
maths-General
maths-
If A –2B = and 2A – 3B = , then matrix B is equal to–
If A –2B = and 2A – 3B = , then matrix B is equal to–
maths-General
maths-
The value of x for which the matrix A = is inverse of B = is
The value of x for which the matrix A = is inverse of B = is
maths-General
maths-
The greatest possible difference between two of the roots if [0, 2] is
The greatest possible difference between two of the roots if [0, 2] is
maths-General
maths-
Statement I : is a diagonal matrix.
Statement II : A square matrix A = (aij) is a diagonal matrix if aij = 0 .
Statement I : is a diagonal matrix.
Statement II : A square matrix A = (aij) is a diagonal matrix if aij = 0 .
maths-General
maths-
Let A be a 2 × 2 matrix with real entries. Let I be the 2 × 2 identity. Denote by tr(A), The sum of diagonal entries of A, Assume that A2 = I.
Statement-I :If AI and A– I, then det A= – 1
Statement-II : If A I and A – I then tr(A)0.
Let A be a 2 × 2 matrix with real entries. Let I be the 2 × 2 identity. Denote by tr(A), The sum of diagonal entries of A, Assume that A2 = I.
Statement-I :If AI and A– I, then det A= – 1
Statement-II : If A I and A – I then tr(A)0.
maths-General
maths-
Suppose , let x be a 2×2 matrix such that AX = B
Statement-I : X is non singular & |x| = ±2
Statement-II : X is a singular matrix
Suppose , let x be a 2×2 matrix such that AX = B
Statement-I : X is non singular & |x| = ±2
Statement-II : X is a singular matrix
maths-General
maths-
If then is equal to
If then is equal to
maths-General
maths-
Statement-I : If A & B are two 3×3 matrices such that AB = 0, then A = 0 or B = 0
Statement-II : If A, B & X are three 3×3 matrices such that AX = B, |A| 0, then X = A–1B
Statement-I : If A & B are two 3×3 matrices such that AB = 0, then A = 0 or B = 0
Statement-II : If A, B & X are three 3×3 matrices such that AX = B, |A| 0, then X = A–1B
maths-General
maths-
Assertion (A): The inverse of the matrix does not exist.
Reason (R) : The matrix is singular. [ = 0, since R2 = 2R1]
Assertion (A): The inverse of the matrix does not exist.
Reason (R) : The matrix is singular. [ = 0, since R2 = 2R1]
maths-General
maths-
Assertion (A): is a diagonal matrix
Reason (R) : A square matrix A = (aij) is a diagonal matrix if aij = 0 for all i j.
Assertion (A): is a diagonal matrix
Reason (R) : A square matrix A = (aij) is a diagonal matrix if aij = 0 for all i j.
maths-General
maths-
Consider = – 1, where ai. aj + bi. bj + ci.cj = and i, j = 1,2,3
Assertion(A) : The value of is equal to zero
Reason(R) : If A be square matrix of odd order such that AAT = I, then | A + I | = 0
Consider = – 1, where ai. aj + bi. bj + ci.cj = and i, j = 1,2,3
Assertion(A) : The value of is equal to zero
Reason(R) : If A be square matrix of odd order such that AAT = I, then | A + I | = 0
maths-General
maths-
Assertion(A) : The inverse of the matrix A = [Aij]n × n where aij = 0, i j is B = [aij–1]n× n
Reason(R): The inverse of singular matrix does not exist
Assertion(A) : The inverse of the matrix A = [Aij]n × n where aij = 0, i j is B = [aij–1]n× n
Reason(R): The inverse of singular matrix does not exist
maths-General