Maths-
General
Easy

Question

For k =blank fraction numerator 1 over denominator square root of 50 end fraction, the value of a, b, c such that PP' = I, where P = open square brackets table row cell 2 divided by 3 end cell cell 3 k end cell a row cell negative 1 divided by 3 end cell cell negative 4 k end cell b row cell 2 divided by 3 end cell cell negative 5 k end cell c end table close square bracketsis-

  1. ±fraction numerator 16 over denominator 5 square root of 2 end fraction, ±fraction numerator 13 over denominator 5 square root of 2 end fraction, negative-or-plusfraction numerator 1 over denominator 3 square root of 2 end fraction    
  2. negative-or-plusfraction numerator 1 over denominator 3 square root of 2 end fraction, ±fraction numerator 13 over denominator 5 square root of 2 end fraction, ±fraction numerator 16 over denominator 5 square root of 2 end fraction    
  3. ±fraction numerator 13 over denominator 5 square root of 2 end fraction, ±fraction numerator 16 over denominator 5 square root of 2 end fraction, negative-or-plusfraction numerator 1 over denominator 3 square root of 2 end fraction    
  4. None of these    

The correct answer is: ±fraction numerator 13 over denominator 5 square root of 2 end fraction, ±fraction numerator 16 over denominator 5 square root of 2 end fraction, negative-or-plusfraction numerator 1 over denominator 3 square root of 2 end fraction


    For PP' = 1,
    open square brackets table row cell 2 divided by 3 end cell cell 3 k end cell a row cell negative 1 divided by 3 end cell cell negative 4 k end cell b row cell 2 divided by 3 end cell cell negative 5 k end cell c end table close square brackets blank open square brackets table row cell 2 divided by 3 end cell cell negative 1 divided by 3 end cell cell 2 divided by 3 end cell row cell 3 k end cell cell negative 4 k end cell cell negative 5 k end cell row a b c end table close square brackets
    = open square brackets table row 1 0 0 row 0 1 0 row 0 0 1 end table close square brackets.
    Performing matrix multiplication, we have
    table row cell fraction numerator 4 over denominator 9 end fraction plus 9 k to the power of 2 end exponent plus a to the power of 2 end exponent equals 1 comma fraction numerator 1 over denominator 9 end fraction plus 16 k to the power of 2 end exponent plus b to the power of 2 end exponent equals 1 comma end cell row cell fraction numerator 4 over denominator 9 end fraction plus 25 k to the power of 2 end exponent plus c to the power of 2 end exponent equals 0 end cell row cell rightwards double arrow a to the power of 2 end exponent equals fraction numerator 169 over denominator 450 to the power of ´ end exponent end fraction comma b to the power of 2 end exponent equals fraction numerator 256 over denominator 450 to the power of ´ end exponent end fraction comma c to the power of 2 end exponent equals fraction numerator 25 over denominator 450 end fraction. end cell row cell text end text text A end text text l end text text s end text text o end text text end text fraction numerator 4 over denominator 9 end fraction minus 15 k to the power of 2 end exponent plus a c equals 0 comma negative fraction numerator 2 over denominator 9 end fraction plus 20 k to the power of 2 end exponent plus b c equals stack stack 0 comma negative with _ below minus fraction numerator 2 over denominator 9 end fraction minus 12 k to the power of 2 end exponent plus a b equals 0 with _ below end cell row cell rightwards double arrow a b equals fraction numerator 208 over denominator 450 to the power of ´ end exponent end fraction comma b c equals negative fraction numerator 80 over denominator 450 to the power of ´ end exponent end fraction comma a c equals fraction numerator negative 65 over denominator 450 end fraction. end cell row cell text end text text H end text text e end text text n end text text c end text text e end text text end text a equals plus-or-minus fraction numerator 13 over denominator 5 square root of 2 end fraction comma b equals plus-or-minus fraction numerator 16 over denominator 5 square root of 2 end fraction comma c minus-or-plus fraction numerator 1 over denominator 3 square root of 2 end fraction. end cell end table
    Hence (C) is correct answer.

    Related Questions to study

    General
    maths-

    If matrix A = open square brackets table row a b c row b c a row c a b end table close square bracketswhere a, b, c are real positive numbers, abc = 1 and AT A = 1, then the value of a3 + b3 + c3 is -

    If matrix A = open square brackets table row a b c row b c a row c a b end table close square bracketswhere a, b, c are real positive numbers, abc = 1 and AT A = 1, then the value of a3 + b3 + c3 is -

    maths-General
    General
    maths-

    If [x] stands for the greatest integer less or equal to x, then in order than the set of equations x – 3y = 4 ; 5x + y = 2 ; [2pi]x – [e]y = [2a] may be consistent, then ‘a’ should lie in -

    If [x] stands for the greatest integer less or equal to x, then in order than the set of equations x – 3y = 4 ; 5x + y = 2 ; [2pi]x – [e]y = [2a] may be consistent, then ‘a’ should lie in -

    maths-General
    General
    maths-

    If the matrix open square brackets table row 0 cell 2 beta end cell gamma row alpha beta cell negative gamma end cell row alpha cell negative beta end cell gamma end table close square brackets is orthogonal, then -

    If the matrix open square brackets table row 0 cell 2 beta end cell gamma row alpha beta cell negative gamma end cell row alpha cell negative beta end cell gamma end table close square brackets is orthogonal, then -

    maths-General
    parallel
    General
    maths-

    For each real x such that negative 1 less than x less than 1. Let A (x) denote the matrix (1 – x)–1/2open parentheses table row 1 cell negative x end cell row cell negative x end cell 1 end table close parentheses and A open parentheses x close parentheses A open parentheses y close parentheses equals k A open parentheses z close parentheses blankwhere x comma y element of R comma negative 1 less than x comma y less than 1and z = fraction numerator x plus y over denominator 1 plus x y end fraction then k is -

    For each real x such that negative 1 less than x less than 1. Let A (x) denote the matrix (1 – x)–1/2open parentheses table row 1 cell negative x end cell row cell negative x end cell 1 end table close parentheses and A open parentheses x close parentheses A open parentheses y close parentheses equals k A open parentheses z close parentheses blankwhere x comma y element of R comma negative 1 less than x comma y less than 1and z = fraction numerator x plus y over denominator 1 plus x y end fraction then k is -

    maths-General
    General
    maths-

    If the system of equations x + 2y – 3z = 2, (k + 3)z = 3, (2k + 1)y + z = 2 is inconsistent, then value of k can be -

    If the system of equations x + 2y – 3z = 2, (k + 3)z = 3, (2k + 1)y + z = 2 is inconsistent, then value of k can be -

    maths-General
    General
    maths-

    If A is a 3 × 3 skew-symmetric matrix, then |A| is given by -

    If A is a 3 × 3 skew-symmetric matrix, then |A| is given by -

    maths-General
    parallel
    General
    chemistry-

    The solubility of iodine in water is greatly increased by:

    The solubility of iodine in water is greatly increased by:

    chemistry-General
    General
    maths-

    Let A = open square brackets table row 2 3 row cell negative 1 end cell 5 end table close square brackets if A–1 = xA + yI2 then x and y are respectively -

    Let A = open square brackets table row 2 3 row cell negative 1 end cell 5 end table close square brackets if A–1 = xA + yI2 then x and y are respectively -

    maths-General
    General
    maths-

    The value of a for which the system of equationsx + y + z = 0ax + (a + 1)y + (a + 2)z = 0 a3x + (a + 1)3y + (a + 2)3z = 0has a non-zero solution is -

    The value of a for which the system of equationsx + y + z = 0ax + (a + 1)y + (a + 2)z = 0 a3x + (a + 1)3y + (a + 2)3z = 0has a non-zero solution is -

    maths-General
    parallel
    General
    maths-

    If A is non-singular matrix of order 3 × 3, then adj (adj A) is equal to -

    If A is non-singular matrix of order 3 × 3, then adj (adj A) is equal to -

    maths-General
    General
    maths-

    If A = open square brackets table row a b c row x y z row p q r end table close square brackets, B = open square brackets table row q cell negative b end cell y row cell negative p end cell a cell negative x end cell row r cell negative c end cell z end table close square brackets then -

    If A = open square brackets table row a b c row x y z row p q r end table close square brackets, B = open square brackets table row q cell negative b end cell y row cell negative p end cell a cell negative x end cell row r cell negative c end cell z end table close square brackets then -

    maths-General
    General
    maths-

    Let A, B, C be three square matrices of the same order, such that whenever AB = AC then B = C, if A is -

    Let A, B, C be three square matrices of the same order, such that whenever AB = AC then B = C, if A is -

    maths-General
    parallel
    General
    maths-

    The inverse of a skew symmetric matrix (if it exists) is -

    The inverse of a skew symmetric matrix (if it exists) is -

    maths-General
    General
    maths-

    Let E(alpha) = open square brackets table row cell cos to the power of 2 end exponent invisible function application alpha end cell cell cos invisible function application alpha sin invisible function application alpha end cell row cell cos invisible function application alpha sin invisible function application alpha end cell cell sin to the power of 2 end exponent invisible function application alpha end cell end table close square brackets. If alpha and beta differs by an odd multiple of pi/2, then E(alpha) E(beta) is a -

    Let E(alpha) = open square brackets table row cell cos to the power of 2 end exponent invisible function application alpha end cell cell cos invisible function application alpha sin invisible function application alpha end cell row cell cos invisible function application alpha sin invisible function application alpha end cell cell sin to the power of 2 end exponent invisible function application alpha end cell end table close square brackets. If alpha and beta differs by an odd multiple of pi/2, then E(alpha) E(beta) is a -

    maths-General
    General
    maths-

    Let A and B be two 2 × 2 matrices. Consider the statements
    i) AB = O rightwards double arrow A = O or B = O
    ii) AB = I2 rightwards double arrow A = B–1
    iii) (A + B)2 = A2 + 2AB + B2
    Then

    Let A and B be two 2 × 2 matrices. Consider the statements
    i) AB = O rightwards double arrow A = O or B = O
    ii) AB = I2 rightwards double arrow A = B–1
    iii) (A + B)2 = A2 + 2AB + B2
    Then

    maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.