Maths-
General
Easy

Question

If [x] stands for the greatest integer less or equal to x, then in order than the set of equations x – 3y = 4 ; 5x + y = 2 ; [2pi]x – [e]y = [2a] may be consistent, then ‘a’ should lie in -

  1. open square brackets 3 comma fraction numerator 7 over denominator 2 end fraction close parentheses    
  2. open parentheses 3 comma fraction numerator 7 over denominator 3 end fraction close parentheses    
  3. open parentheses 3 comma fraction numerator 7 over denominator 3 end fraction close square brackets    
  4. None of these    

The correct answer is: open square brackets 3 comma fraction numerator 7 over denominator 2 end fraction close parentheses


    On solving x – 3y = 4 and 5x + y = 2, we get x = fraction numerator 5 over denominator 8 end fraction, y = –fraction numerator 9 over denominator 8 end fraction. As [2pi] = 6 and [e] = 2.
    So that the three equations are consistence if
    This gives 6 less or equal than 2a < 7 or 3 less or equal than a < fraction numerator 7 over denominator 2 end fraction.
    Hence (A) is correct answer.

    Related Questions to study

    General
    maths-

    If the matrix open square brackets table row 0 cell 2 beta end cell gamma row alpha beta cell negative gamma end cell row alpha cell negative beta end cell gamma end table close square brackets is orthogonal, then -

    If the matrix open square brackets table row 0 cell 2 beta end cell gamma row alpha beta cell negative gamma end cell row alpha cell negative beta end cell gamma end table close square brackets is orthogonal, then -

    maths-General
    General
    maths-

    For each real x such that negative 1 less than x less than 1. Let A (x) denote the matrix (1 – x)–1/2open parentheses table row 1 cell negative x end cell row cell negative x end cell 1 end table close parentheses and A open parentheses x close parentheses A open parentheses y close parentheses equals k A open parentheses z close parentheses blankwhere x comma y element of R comma negative 1 less than x comma y less than 1and z = fraction numerator x plus y over denominator 1 plus x y end fraction then k is -

    For each real x such that negative 1 less than x less than 1. Let A (x) denote the matrix (1 – x)–1/2open parentheses table row 1 cell negative x end cell row cell negative x end cell 1 end table close parentheses and A open parentheses x close parentheses A open parentheses y close parentheses equals k A open parentheses z close parentheses blankwhere x comma y element of R comma negative 1 less than x comma y less than 1and z = fraction numerator x plus y over denominator 1 plus x y end fraction then k is -

    maths-General
    General
    maths-

    If the system of equations x + 2y – 3z = 2, (k + 3)z = 3, (2k + 1)y + z = 2 is inconsistent, then value of k can be -

    If the system of equations x + 2y – 3z = 2, (k + 3)z = 3, (2k + 1)y + z = 2 is inconsistent, then value of k can be -

    maths-General
    parallel
    General
    maths-

    If A is a 3 × 3 skew-symmetric matrix, then |A| is given by -

    If A is a 3 × 3 skew-symmetric matrix, then |A| is given by -

    maths-General
    General
    chemistry-

    The solubility of iodine in water is greatly increased by:

    The solubility of iodine in water is greatly increased by:

    chemistry-General
    General
    maths-

    Let A = open square brackets table row 2 3 row cell negative 1 end cell 5 end table close square brackets if A–1 = xA + yI2 then x and y are respectively -

    Let A = open square brackets table row 2 3 row cell negative 1 end cell 5 end table close square brackets if A–1 = xA + yI2 then x and y are respectively -

    maths-General
    parallel
    General
    maths-

    The value of a for which the system of equationsx + y + z = 0ax + (a + 1)y + (a + 2)z = 0 a3x + (a + 1)3y + (a + 2)3z = 0has a non-zero solution is -

    The value of a for which the system of equationsx + y + z = 0ax + (a + 1)y + (a + 2)z = 0 a3x + (a + 1)3y + (a + 2)3z = 0has a non-zero solution is -

    maths-General
    General
    maths-

    If A is non-singular matrix of order 3 × 3, then adj (adj A) is equal to -

    If A is non-singular matrix of order 3 × 3, then adj (adj A) is equal to -

    maths-General
    General
    maths-

    If A = open square brackets table row a b c row x y z row p q r end table close square brackets, B = open square brackets table row q cell negative b end cell y row cell negative p end cell a cell negative x end cell row r cell negative c end cell z end table close square brackets then -

    If A = open square brackets table row a b c row x y z row p q r end table close square brackets, B = open square brackets table row q cell negative b end cell y row cell negative p end cell a cell negative x end cell row r cell negative c end cell z end table close square brackets then -

    maths-General
    parallel
    General
    maths-

    Let A, B, C be three square matrices of the same order, such that whenever AB = AC then B = C, if A is -

    Let A, B, C be three square matrices of the same order, such that whenever AB = AC then B = C, if A is -

    maths-General
    General
    maths-

    The inverse of a skew symmetric matrix (if it exists) is -

    The inverse of a skew symmetric matrix (if it exists) is -

    maths-General
    General
    maths-

    Let E(alpha) = open square brackets table row cell cos to the power of 2 end exponent invisible function application alpha end cell cell cos invisible function application alpha sin invisible function application alpha end cell row cell cos invisible function application alpha sin invisible function application alpha end cell cell sin to the power of 2 end exponent invisible function application alpha end cell end table close square brackets. If alpha and beta differs by an odd multiple of pi/2, then E(alpha) E(beta) is a -

    Let E(alpha) = open square brackets table row cell cos to the power of 2 end exponent invisible function application alpha end cell cell cos invisible function application alpha sin invisible function application alpha end cell row cell cos invisible function application alpha sin invisible function application alpha end cell cell sin to the power of 2 end exponent invisible function application alpha end cell end table close square brackets. If alpha and beta differs by an odd multiple of pi/2, then E(alpha) E(beta) is a -

    maths-General
    parallel
    General
    maths-

    Let A and B be two 2 × 2 matrices. Consider the statements
    i) AB = O rightwards double arrow A = O or B = O
    ii) AB = I2 rightwards double arrow A = B–1
    iii) (A + B)2 = A2 + 2AB + B2
    Then

    Let A and B be two 2 × 2 matrices. Consider the statements
    i) AB = O rightwards double arrow A = O or B = O
    ii) AB = I2 rightwards double arrow A = B–1
    iii) (A + B)2 = A2 + 2AB + B2
    Then

    maths-General
    General
    Maths-

    Statement-I :If x equals cos space theta left parenthesis 1 plus sin space theta right parenthesis plus sin space theta left parenthesis 1 minus cos space theta right parenthesis and y equals cos space theta left parenthesis 1 plus cos space theta right parenthesis minus sin space theta left parenthesis 1 minus sin space theta right parenthesis then x plus y less or equal than 3

    Statement-II : sum from straight r equals 1 to straight n minus 1 of   cos squared space open parentheses fraction numerator straight r pi over denominator straight n end fraction close parentheses equals straight n over 2 minus 1
    Statement-III : sin space open parentheses pi over n close parentheses plus sin space open parentheses fraction numerator 3 pi over denominator n end fraction close parentheses plus sin space open parentheses fraction numerator 5 pi over denominator n end fraction close parentheses plus midline horizontal ellipsis plus n text  terms  end text equals 0

    img

    Statement-I :If x equals cos space theta left parenthesis 1 plus sin space theta right parenthesis plus sin space theta left parenthesis 1 minus cos space theta right parenthesis and y equals cos space theta left parenthesis 1 plus cos space theta right parenthesis minus sin space theta left parenthesis 1 minus sin space theta right parenthesis then x plus y less or equal than 3

    Statement-II : sum from straight r equals 1 to straight n minus 1 of   cos squared space open parentheses fraction numerator straight r pi over denominator straight n end fraction close parentheses equals straight n over 2 minus 1
    Statement-III : sin space open parentheses pi over n close parentheses plus sin space open parentheses fraction numerator 3 pi over denominator n end fraction close parentheses plus sin space open parentheses fraction numerator 5 pi over denominator n end fraction close parentheses plus midline horizontal ellipsis plus n text  terms  end text equals 0

    Maths-General

    img

    General
    chemistry-

    C l subscript 2 space i s space u s e d space i n space t h e space e x t r a c t i o n space o f colon

    C l subscript 2 space i s space u s e d space i n space t h e space e x t r a c t i o n space o f colon

    chemistry-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.