Maths-
General
Easy

Question

For x element of R, let [x] denote the greatest integer less or equal than x, then value ofopen square brackets negative fraction numerator 1 over denominator 3 end fraction close square brackets+open square brackets negative fraction numerator 1 over denominator 3 end fraction minus fraction numerator 1 over denominator 100 end fraction close square brackets+ open square brackets negative fraction numerator 1 over denominator 3 end fraction minus fraction numerator 2 over denominator 100 end fraction close square brackets+…+open square brackets negative fraction numerator 1 over denominator 3 end fraction minus fraction numerator 99 over denominator 100 end fraction close square bracketsis -

  1. –100    
  2. –123    
  3. –135    
  4. –153    

The correct answer is: –135


    For 0 less or equal thanless or equal than 66, 0 less or equal than fraction numerator r over denominator 100 end fraction< fraction numerator 2 over denominator 3 end fraction
    rightwards double arrowfraction numerator 2 over denominator 3 end fraction < – fraction numerator r over denominator 100 end fraction less or equal than 0
    rightwards double arrowfraction numerator 1 over denominator 3 end fractionfraction numerator 2 over denominator 3 end fraction< –fraction numerator 1 over denominator 3 end fractionfraction numerator r over denominator 100 end fraction less or equal thanfraction numerator 1 over denominator 3 end fraction
    thereforeopen square brackets negative fraction numerator 1 over denominator 3 end fraction minus fraction numerator r over denominator 100 end fraction close square brackets= –1 for 0 less or equal thanless or equal than 66
    Also, for 67 less or equal thanless or equal than 100, fraction numerator 67 over denominator 100 end fractionless or equal than fraction numerator r over denominator 100 end fraction less or equal than 1
    rightwards double arrow–1 less or equal thanfraction numerator r over denominator 100 end fraction less or equal thanfraction numerator 67 over denominator 100 end fraction
    rightwards double arrowfraction numerator 1 over denominator 3 end fraction – 1 less or equal thanfraction numerator 1 over denominator 3 end fractionfraction numerator r over denominator 100 end fraction less or equal thanfraction numerator 1 over denominator 3 end fractionfraction numerator 67 over denominator 100 end fraction
    thereforeopen square brackets negative fraction numerator 1 over denominator 3 end fraction minus fraction numerator r over denominator 100 end fraction close square brackets= –2 for 67 less or equal thanless or equal than 100
    Hence, not stretchy sum subscript r equals 0 end subscript superscript 100 end superscript open square brackets negative fraction numerator 1 over denominator 3 end fraction minus fraction numerator r over denominator 100 end fraction close square brackets= 67(–1) + 2(–34) = –135.

    Related Questions to study

    General
    maths-

    The number of integral solutions of the equation x + y + z = 24 subjected to conditions that 1 less or equal thanless or equal than 5, 12 less or equal thanless or equal than 18, z less or equal than –1

    The number of integral solutions of the equation x + y + z = 24 subjected to conditions that 1 less or equal thanless or equal than 5, 12 less or equal thanless or equal than 18, z less or equal than –1

    maths-General
    General
    maths-

    Ravish write letters to his five friends and address the corresponding envelopes. In how many ways can the letters be placed in the envelopes so that at least two of them are in the wrong envelopes -

    Ravish write letters to his five friends and address the corresponding envelopes. In how many ways can the letters be placed in the envelopes so that at least two of them are in the wrong envelopes -

    maths-General
    General
    maths-

    In how many ways can we get a sum of at most 17 by throwing six distinct dice -

    In how many ways can we get a sum of at most 17 by throwing six distinct dice -

    maths-General
    parallel
    General
    maths-

    The number of non negative integral solutions of equation 3x + y + z = 24

    The number of non negative integral solutions of equation 3x + y + z = 24

    maths-General
    General
    maths-

    Sum of divisors of 25 ·37 ·53 · 72 is –

    Sum of divisors of 25 ·37 ·53 · 72 is –

    maths-General
    General
    maths-

    The length of the perpendicular from the pole to the straight line fraction numerator 6 square root of 2 over denominator r end fraction equals C o s space theta plus S i n space theta is

    The length of the perpendicular from the pole to the straight line fraction numerator 6 square root of 2 over denominator r end fraction equals C o s space theta plus S i n space theta is

    maths-General
    parallel
    General
    maths-

    The condition for the lines c subscript 1 over r equals a subscript 1 c o s space theta plus b subscript 1 s i n space theta and c subscript 2 over r equals a subscript 2 c o s space theta plus b subscript 2 s i n space theta to be perpendicular is

    The condition for the lines c subscript 1 over r equals a subscript 1 c o s space theta plus b subscript 1 s i n space theta and c subscript 2 over r equals a subscript 2 c o s space theta plus b subscript 2 s i n space theta to be perpendicular is

    maths-General
    General
    Maths-

    If f : R →R; f(x) = sin x + x, then the value of not stretchy integral subscript 0 end subscript superscript pi end superscript blank (f-1 (x)) dx, is equal to

    Here we used the concept of integration and the inverse functions to solve the question. Finding an antiderivative of a function is the procedure known as integration. The process of adding the slices to complete it is comparable. The process of integration is the opposite of that of differentiation. So the final answer is straight pi squared over 2 minus 2.

    If f : R →R; f(x) = sin x + x, then the value of not stretchy integral subscript 0 end subscript superscript pi end superscript blank (f-1 (x)) dx, is equal to

    Maths-General

    Here we used the concept of integration and the inverse functions to solve the question. Finding an antiderivative of a function is the procedure known as integration. The process of adding the slices to complete it is comparable. The process of integration is the opposite of that of differentiation. So the final answer is straight pi squared over 2 minus 2.

    General
    maths-

    The polar equation of the straight line with intercepts 'a' and 'b' on the rays theta equals 0 and theta equals fraction numerator pi over denominator 2 end fraction respectively is

    The polar equation of the straight line with intercepts 'a' and 'b' on the rays theta equals 0 and theta equals fraction numerator pi over denominator 2 end fraction respectively is

    maths-General
    parallel
    General
    maths-

    The polar equation of the straight line parallel to the initial line and at a distance of 4 units above the initial line is

    The polar equation of the straight line parallel to the initial line and at a distance of 4 units above the initial line is

    maths-General
    General
    maths-

    The polar equation of x to the power of 3 end exponent plus y to the power of 3 end exponent equals 3 axy is

    The polar equation of x to the power of 3 end exponent plus y to the power of 3 end exponent equals 3 axy is

    maths-General
    General
    maths-

    If x, y, z are integers and x greater or equal than 0, y greater or equal than 1, z greater or equal than 2, x + y + z = 15, then the number of values of the ordered triplet (x, y, z) is -

    If x, y, z are integers and x greater or equal than 0, y greater or equal than 1, z greater or equal than 2, x + y + z = 15, then the number of values of the ordered triplet (x, y, z) is -

    maths-General
    parallel
    General
    Maths-

    If alpha not equal to beta comma alpha 2 equals 5 alpha minus 3 comma beta 2 times equals 5 beta minus 3 commathen the equation whose roots are alpha divided by beta straight & beta divided by alpha

    Here we used the concept of quadratic equations and solved the problem. We also understood the concept of discriminant and used it in the solution to find the intervals. Therefore, the equation is 3 x squared minus 19 x plus 3 equals 0.

    If alpha not equal to beta comma alpha 2 equals 5 alpha minus 3 comma beta 2 times equals 5 beta minus 3 commathen the equation whose roots are alpha divided by beta straight & beta divided by alpha

    Maths-General

    Here we used the concept of quadratic equations and solved the problem. We also understood the concept of discriminant and used it in the solution to find the intervals. Therefore, the equation is 3 x squared minus 19 x plus 3 equals 0.

    General
    Maths-

    Let p, q element of {1, 2, 3, 4}. Then number of equation of the form px2 + qx + 1 = 0, having real roots, is

    Here we used the concept of quadratic equations and solved the problem. We also understood the concept of discriminant and used it in the solution to find the intervals. Therefore, total 7 seven solutions are possible so 7 equations can be formed.

    Let p, q element of {1, 2, 3, 4}. Then number of equation of the form px2 + qx + 1 = 0, having real roots, is

    Maths-General

    Here we used the concept of quadratic equations and solved the problem. We also understood the concept of discriminant and used it in the solution to find the intervals. Therefore, total 7 seven solutions are possible so 7 equations can be formed.

    General
    Maths-

    ax2 + bx + c = 0 has real and distinct roots null. Further a > 0, b < 0 and c < 0, then –

    Here we used the concept of quadratic equations and solved the problem. The concept of sum of roots and product of roots was also used here. Therefore, α∣ < β.

    ax2 + bx + c = 0 has real and distinct roots null. Further a > 0, b < 0 and c < 0, then –

    Maths-General

    Here we used the concept of quadratic equations and solved the problem. The concept of sum of roots and product of roots was also used here. Therefore, α∣ < β.

    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.