Maths-
General
Easy

Question

How to define Wavy Curve Method f(x)?

  1. open parentheses x minus a subscript 1 close parentheses to the power of n minus 1 end exponent divided by open parentheses x minus a subscript 2 close parentheses to the power of n 2 end exponent divided by open parentheses x minus a subscript 3 close parentheses to the power of n 3 end exponent......divided by open parentheses x minus a subscript k close parentheses to the power of n k asterisk times end exponent open parentheses x minus b subscript 1 close parentheses to the power of m minus 1 end exponent divided by open parentheses x minus b subscript 2 close parentheses to the power of m 2 end exponent divided by open parentheses x minus b subscript 3 close parentheses to the power of m 3 end exponent......divided by open parentheses x minus b subscript 2 close parentheses to the power of m p end exponent
  2. open parentheses x minus a subscript 1 close parentheses to the power of n plus 1 end exponent plus open parentheses x minus a subscript 2 close parentheses to the power of n 2 end exponent plus open parentheses x minus a subscript 3 close parentheses to the power of n 3 end exponent.......plus open parentheses x minus a subscript k close parentheses to the power of n k end exponent divided by open parentheses x minus b subscript 1 close parentheses to the power of m 1 end exponent plus open parentheses x minus b subscript 2 close parentheses to the power of m 2 end exponent plus open parentheses x minus b subscript 3 close parentheses to the power of n 3 end exponent......plus open parentheses x minus b subscript p close parentheses to the power of m p end exponent
  3. open parentheses x minus a subscript 1 close parentheses to the power of n 1 end exponent open parentheses x minus a subscript 2 close parentheses to the power of n 2 end exponent open parentheses x minus a subscript 3 close parentheses to the power of n 3 end exponent......open parentheses x minus a subscript 1 close parentheses to the power of n k end exponent divided by open parentheses x minus b subscript 1 close parentheses to the power of m 1 end exponent open parentheses x minus b subscript 2 close parentheses to the power of m 2 end exponent open parentheses x minus b subscript 3 close parentheses to the power of m 3 end exponent......open parentheses x minus b subscript p close parentheses to the power of m p end exponent
  4. open parentheses x minus a subscript 1 close parentheses to the power of n 1 end exponent minus open parentheses x minus a subscript 2 close parentheses to the power of n 2 end exponent minus open parentheses x minus a subscript 3 close parentheses to the power of n minus end exponent.....negative open parentheses x minus a subscript k close parentheses to the power of n k divided by 2 end exponent divided by open parentheses x minus b subscript 1 close parentheses to the power of m 1 end exponent minus open parentheses x minus b subscript 2 close parentheses to the power of m 2 end exponent minus open parentheses x minus b subscript 3 close parentheses to the power of m 3 end exponent.....negative open parentheses x minus b subscript p close parentheses to the power of m p end exponent

The correct answer is: open parentheses x minus a subscript 1 close parentheses to the power of n 1 end exponent open parentheses x minus a subscript 2 close parentheses to the power of n 2 end exponent open parentheses x minus a subscript 3 close parentheses to the power of n 3 end exponent......open parentheses x minus a subscript 1 close parentheses to the power of n k end exponent divided by open parentheses x minus b subscript 1 close parentheses to the power of m 1 end exponent open parentheses x minus b subscript 2 close parentheses to the power of m 2 end exponent open parentheses x minus b subscript 3 close parentheses to the power of m 3 end exponent......open parentheses x minus b subscript p close parentheses to the power of m p end exponent

Related Questions to study

General
physics-

Two metal cubes A and B of same size are arranged as shown in the figure. The extreme ends of the combination are maintained at the indicated temperatures. The arrangement is thermally insulated. The coefficients of thermal conductivity of A and B are 300 W divided by m ℃ and 200 W divided by m ℃, respectively. After steady state is reached, the temperature of the interface will be

Two metal cubes A and B of same size are arranged as shown in the figure. The extreme ends of the combination are maintained at the indicated temperatures. The arrangement is thermally insulated. The coefficients of thermal conductivity of A and B are 300 W divided by m ℃ and 200 W divided by m ℃, respectively. After steady state is reached, the temperature of the interface will be

physics-General
General
physics-

The coefficient of thermal conductivity of copper is 9 times that of steel. In the composite cylindrical bar shown in the figure, what will be the temperature at the junction of copper and steel?

The coefficient of thermal conductivity of copper is 9 times that of steel. In the composite cylindrical bar shown in the figure, what will be the temperature at the junction of copper and steel?

physics-General
General
physics-

A student takes 50 g m wax (specific heat equals 0.6 blank k c a l divided by k g ℃) and heats it till it boils. The graph between temperature and time is as follows. Heat supplied to the wax per minute and boiling point are respectively

A student takes 50 g m wax (specific heat equals 0.6 blank k c a l divided by k g ℃) and heats it till it boils. The graph between temperature and time is as follows. Heat supplied to the wax per minute and boiling point are respectively

physics-General
parallel
General
physics-

A composite metal bar of uniform section is made up of length 25 blank c m of copper, 10 blank c m of nickel and 15 blank c m of aluminium. Each part being in perfect thermal contact with the adjoining part. The copper end of the composite rod is maintained at 100 ℃ and the aluminium end at 0 ℃. The whole rod is covered with belt so that no heat loss occurs at the sides. If K subscript C u end subscript equals 2 K subscript A l end subscript and K subscript A l end subscript equals 3 K subscript N i end subscript, then what will be the temperatures of C u minus N i and N i minus A l junctions respectively

A composite metal bar of uniform section is made up of length 25 blank c m of copper, 10 blank c m of nickel and 15 blank c m of aluminium. Each part being in perfect thermal contact with the adjoining part. The copper end of the composite rod is maintained at 100 ℃ and the aluminium end at 0 ℃. The whole rod is covered with belt so that no heat loss occurs at the sides. If K subscript C u end subscript equals 2 K subscript A l end subscript and K subscript A l end subscript equals 3 K subscript N i end subscript, then what will be the temperatures of C u minus N i and N i minus A l junctions respectively

physics-General
General
physics-

The plots of intensity of radiation v e r s u s blankwavelength of three black bodies at temperatures T subscript 1 end subscript comma blank T subscript 2 end subscript a n d T subscript 3 end subscript are shown. Then,

The plots of intensity of radiation v e r s u s blankwavelength of three black bodies at temperatures T subscript 1 end subscript comma blank T subscript 2 end subscript a n d T subscript 3 end subscript are shown. Then,

physics-General
General
maths-

Consider the system of linear equations: x subscript 1 end subscript plus 2 x subscript 2 end subscript plus x subscript 3 end subscript equals 3 semicolon 2 x subscript 1 end subscript plus 3 x subscript 2 end subscript plus x subscript 3 end subscript equals 3x subscript 1 end subscript plus 5 x subscript 2 end subscript plus 2 x subscript 3 end subscript equals 1 The system has

Consider the system of linear equations: x subscript 1 end subscript plus 2 x subscript 2 end subscript plus x subscript 3 end subscript equals 3 semicolon 2 x subscript 1 end subscript plus 3 x subscript 2 end subscript plus x subscript 3 end subscript equals 3x subscript 1 end subscript plus 5 x subscript 2 end subscript plus 2 x subscript 3 end subscript equals 1 The system has

maths-General
parallel
General
Maths-

If the system of equations x plus y plus z equals 6 comma x plus 2 y plus lambda z equals 0 comma x plus 2 y plus 3 z equals 10 has no solution, then Error converting from MathML to accessible text.

If the system of equations x plus y plus z equals 6 comma x plus 2 y plus lambda z equals 0 comma x plus 2 y plus 3 z equals 10 has no solution, then Error converting from MathML to accessible text.

Maths-General
General
physics-

Two bars of thermal conductivities K and 3 K and lengths 1 c m and 2 c m respectively have equal cross-sectional area, they are joined lengths wise as shown in the figure. If the temperature at the ends of this composite bar is 0 ℃ and 100 ℃ respectively (see figure), then the temperature ϕ of the interface is

Two bars of thermal conductivities K and 3 K and lengths 1 c m and 2 c m respectively have equal cross-sectional area, they are joined lengths wise as shown in the figure. If the temperature at the ends of this composite bar is 0 ℃ and 100 ℃ respectively (see figure), then the temperature ϕ of the interface is

physics-General
General
Maths-

If A equals open curly brackets table attributes columnalign left end attributes row i 0 row 0 cell negative i end cell end table close curly brackets then A2 equals

If A equals open curly brackets table attributes columnalign left end attributes row i 0 row 0 cell negative i end cell end table close curly brackets then A2 equals

Maths-General
parallel
General
maths-

The perimeter of a straight triangleis 6 times the A.M of the sines of its angles if the side text  'a'  end textis , then the angle A is

The perimeter of a straight triangleis 6 times the A.M of the sines of its angles if the side text  'a'  end textis , then the angle A is

maths-General
General
Maths-

If the angles of triangle are in the ratio 1:1:4 then ratio of the perimeter of triangle to its largest side

If the angles of triangle are in the ratio 1:1:4 then ratio of the perimeter of triangle to its largest side

Maths-General
General
Maths-

The angles of a triangle are in the ratio 3:5:10.Then ratio of smallest to greatest side is

The angles of a triangle are in the ratio 3:5:10.Then ratio of smallest to greatest side is

Maths-General
parallel
General
Maths-

text  If  end text f left parenthesis 9 right parenthesis equals 9 comma f to the power of apostrophe left parenthesis 9 right parenthesis equals 4 comma text  then  end text fraction numerator L t over denominator x not stretchy rightwards arrow t end fraction fraction numerator square root of f left parenthesis x right parenthesis end root minus 3 over denominator square root of x minus 3 end fraction text  equals  end text

text  If  end text f left parenthesis 9 right parenthesis equals 9 comma f to the power of apostrophe left parenthesis 9 right parenthesis equals 4 comma text  then  end text fraction numerator L t over denominator x not stretchy rightwards arrow t end fraction fraction numerator square root of f left parenthesis x right parenthesis end root minus 3 over denominator square root of x minus 3 end fraction text  equals  end text

Maths-General
General
Maths-

The sides of a triangle aresin invisible function application alpha comma cos invisible function application alpha text  and  end text square root of 1 plus sin invisible function application alpha cos invisible function application alpha end root text  for some  end text 0 less than alpha less than pi over 2 Then the greatest angle of the triangle is  [AIEEE 2014]

The sides of a triangle aresin invisible function application alpha comma cos invisible function application alpha text  and  end text square root of 1 plus sin invisible function application alpha cos invisible function application alpha end root text  for some  end text 0 less than alpha less than pi over 2 Then the greatest angle of the triangle is  [AIEEE 2014]

Maths-General
General
Maths-

L t subscript x not stretchy rightwards arrow negative straight infinity end subscript open square brackets fraction numerator x to the power of 4 sin invisible function application open parentheses 1 over x close parentheses plus x squared over denominator open parentheses 1 plus vertical line x vertical line cubed close parentheses end fraction close square brackets equals

L t subscript x not stretchy rightwards arrow negative straight infinity end subscript open square brackets fraction numerator x to the power of 4 sin invisible function application open parentheses 1 over x close parentheses plus x squared over denominator open parentheses 1 plus vertical line x vertical line cubed close parentheses end fraction close square brackets equals

Maths-General
parallel

card img

With Turito Academy.

card img

With Turito Foundation.

card img

Get an Expert Advice From Turito.

Turito Academy

card img

With Turito Academy.

Test Prep

card img

With Turito Foundation.