Chemistry-
General
Easy

Question

C l subscript 2 space i s space u s e d space i n space t h e space e x t r a c t i o n space o f colon

  1. Pt
  2. Au
  3. Both (a) and (b)
  4. None of these

The correct answer is: Both (a) and (b)


    It is used in extractions of metals like Au, Pt,e.g.,

    table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell PtCl subscript 4 not stretchy ⟶ with 873 K on top Pt plus 2 Cl subscript 2 end cell row cell 2 AuCl subscript 3 not stretchy ⟶ with 463 K on top 2 Au plus 3 Cl subscript 2 end cell end table

    Related Questions to study

    General
    chemistry-

    Barium adipate  not stretchy ⟶ with text  Dry distillation  end text on top left parenthesis straight A right parenthesis not stretchy ⟶ with MeCO subscript 3 straight H on top left parenthesis straight B right parenthesis The compound (A) and (B) , respectively, are:

    Barium adipate  not stretchy ⟶ with text  Dry distillation  end text on top left parenthesis straight A right parenthesis not stretchy ⟶ with MeCO subscript 3 straight H on top left parenthesis straight B right parenthesis The compound (A) and (B) , respectively, are:

    chemistry-General
    General
    maths-

    There are two possible value of A in the solution of the matrix equationopen square brackets table row cell 2 A plus 1 end cell cell negative 5 end cell row cell negative 4 end cell A end table close square brackets to the power of negative 1 end exponent open square brackets table row cell A minus 5 end cell B row cell 2 A minus 2 end cell C end table close square brackets= open square brackets table row 14 D row E F end table close square brackets, where A, B, C, D, E, F are real numbers. The absolute value of the difference of these two solutions, is:

    There are two possible value of A in the solution of the matrix equationopen square brackets table row cell 2 A plus 1 end cell cell negative 5 end cell row cell negative 4 end cell A end table close square brackets to the power of negative 1 end exponent open square brackets table row cell A minus 5 end cell B row cell 2 A minus 2 end cell C end table close square brackets= open square brackets table row 14 D row E F end table close square brackets, where A, B, C, D, E, F are real numbers. The absolute value of the difference of these two solutions, is:

    maths-General
    General
    maths-

    For a given matrix A = open square brackets table row cell cos invisible function application theta end cell cell negative sin invisible function application theta end cell row cell sin invisible function application theta end cell cell cos invisible function application theta end cell end table close square brackets which of the following statement holds good:

    For a given matrix A = open square brackets table row cell cos invisible function application theta end cell cell negative sin invisible function application theta end cell row cell sin invisible function application theta end cell cell cos invisible function application theta end cell end table close square brackets which of the following statement holds good:

    maths-General
    parallel
    General
    maths-

    A and B are two given matrices such that the order of A is 3 × 4, If A'B and BA' are both defined then:

    A and B are two given matrices such that the order of A is 3 × 4, If A'B and BA' are both defined then:

    maths-General
    General
    maths-

    If A is an involuntary matrix given byA = open square brackets table row 0 1 cell negative 1 end cell row 4 cell negative 3 end cell 4 row 3 cell negative 3 end cell 4 end table close square bracketsthen the inverse of fraction numerator A over denominator 2 end fractionwill be

    If A is an involuntary matrix given byA = open square brackets table row 0 1 cell negative 1 end cell row 4 cell negative 3 end cell 4 row 3 cell negative 3 end cell 4 end table close square bracketsthen the inverse of fraction numerator A over denominator 2 end fractionwill be

    maths-General
    General
    maths-

    Matrix A =open square brackets table row x 3 2 row 1 y 4 row 2 2 z end table close square brackets, If xyz = 60 and 8x + 4y + 3z = 20, then A(adj A) is equal to:

    Matrix A =open square brackets table row x 3 2 row 1 y 4 row 2 2 z end table close square brackets, If xyz = 60 and 8x + 4y + 3z = 20, then A(adj A) is equal to:

    maths-General
    parallel
    General
    Maths-

    Let A =open square brackets table row 1 0 0 row 2 1 0 row 3 2 1 end table close square brackets. If U1, U2, U3 are column matrices satisfying AU1 = open square brackets table row 1 row 0 row 0 end table close square brackets, AU2 = open square brackets table row 2 row 3 row 0 end table close square brackets, AU3 = open square brackets table row 2 row 3 row 1 end table close square brackets and U is 3 × 3 matrix whose columns are U1, U2 and U3. Then |U| =

    Let A =open square brackets table row 1 0 0 row 2 1 0 row 3 2 1 end table close square brackets. If U1, U2, U3 are column matrices satisfying AU1 = open square brackets table row 1 row 0 row 0 end table close square brackets, AU2 = open square brackets table row 2 row 3 row 0 end table close square brackets, AU3 = open square brackets table row 2 row 3 row 1 end table close square brackets and U is 3 × 3 matrix whose columns are U1, U2 and U3. Then |U| =

    Maths-General
    General
    maths-

    If the matrix A = open square brackets table row 8 cell – 6 end cell 2 row cell – 6 end cell 7 cell – 4 end cell row 2 cell – 4 end cell lambda end table close square brackets is singular, then λ equal to -

    If the matrix A = open square brackets table row 8 cell – 6 end cell 2 row cell – 6 end cell 7 cell – 4 end cell row 2 cell – 4 end cell lambda end table close square brackets is singular, then λ equal to -

    maths-General
    General
    maths-

    If AB = I and B = A' then :

    If AB = I and B = A' then :

    maths-General
    parallel
    General
    maths-

    If A and B are square matrices of same size and |B| not equal to 0, then (B–1 AB)4 =

    If A and B are square matrices of same size and |B| not equal to 0, then (B–1 AB)4 =

    maths-General
    General
    maths-

    If B is non-singular matrix and A is a square matrix of same size, then det (B–1 AB) =

    If B is non-singular matrix and A is a square matrix of same size, then det (B–1 AB) =

    maths-General
    General
    maths-

    If A satisfies the equation x3 – 5x2 + 4x + k = 0, then A–1 exists if -

    If A satisfies the equation x3 – 5x2 + 4x + k = 0, then A–1 exists if -

    maths-General
    parallel
    General
    Maths-

    If 3A = open square brackets table row 1 2 2 row 2 1 cell – 2 end cell row x 2 y end table close square bracketsand A is orthogonal, then x + y =

    If 3A = open square brackets table row 1 2 2 row 2 1 cell – 2 end cell row x 2 y end table close square bracketsand A is orthogonal, then x + y =

    Maths-General
    General
    maths-

    If A, B are symmetric matrices of the same order then (AB – BA) is -

    If A, B are symmetric matrices of the same order then (AB – BA) is -

    maths-General
    General
    maths-

    If A = open square brackets table row 4 cell x plus 2 end cell row cell 2 x – 3 end cell cell x plus 1 end cell end table close square brackets is symmetric, then x =

    If A = open square brackets table row 4 cell x plus 2 end cell row cell 2 x – 3 end cell cell x plus 1 end cell end table close square brackets is symmetric, then x =

    maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.