Maths-
General
Easy

Question

If xn > xn–1 >...> x2 > x1 > 1 then the value of log subscript straight x subscript 1 end subscript invisible function application log subscript straight x subscript 2 end subscript invisible function application log subscript straight x subscript 3 end subscript invisible function application horizontal ellipsis log subscript straight x subscript straight n end subscript invisible function application x subscript nblank to the power of x subscript n minus 1 end subscript superscript up right diagonal ellipsis to the power of x subscript 1 end exponent end superscript end exponentis equal to-

  1. 0    
  2. 1    
  3. 2    
  4. None of these    

The correct answer is: 0


    log subscript x subscript 1 end subscript end subscript invisible function application blanklog subscript x subscript 3 end subscript end subscript invisible function application blank...log subscript x subscript n minus 1 end subscript end subscript invisible function application blank open parentheses x subscript n minus 1 end subscript to the power of x subscript n minus 2 end subscript superscript. to the power of. to the power of. x subscript 1 end subscript end exponent end exponent end superscript end exponent log subscript x subscript n end subscript end subscript invisible function application x subscript n end subscript close parentheses
    = log subscript x subscript 1 end subscript end subscript invisible function application x subscript 1 end subscript= 1

    Related Questions to study

    General
    maths-

    The expression logp where p greater or equal than 2 comma p element of N semicolon n element of N when simplified is.

    The expression logp where p greater or equal than 2 comma p element of N semicolon n element of N when simplified is.

    maths-General
    General
    maths-

    Let N=open parentheses open parentheses square root of 7 close parentheses to the power of fraction numerator 2 over denominator log subscript 25 end subscript invisible function application 7 end fraction end exponent minus 12 5 to the power of log subscript 25 end subscript invisible function application 6 end exponent close parentheses Then log2N has the value –

    Let N=open parentheses open parentheses square root of 7 close parentheses to the power of fraction numerator 2 over denominator log subscript 25 end subscript invisible function application 7 end fraction end exponent minus 12 5 to the power of log subscript 25 end subscript invisible function application 6 end exponent close parentheses Then log2N has the value –

    maths-General
    General
    maths-

    If a2 + 4b2 = 12ab, then log (a + 2b) =

    If a2 + 4b2 = 12ab, then log (a + 2b) =

    maths-General
    parallel
    General
    maths-

    Given that logpx = α and logqx = β, then value of logp/q x equals-

    Given that logpx = α and logqx = β, then value of logp/q x equals-

    maths-General
    General
    Maths-

    If f(x) is the primitive of fraction numerator sin invisible function application root index 3 of x end root log invisible function application left parenthesis 1 plus 3 x right parenthesis over denominator left parenthesis tan to the power of – 1 end exponent invisible function application square root of x right parenthesis to the power of 2 end exponent left parenthesis e to the power of root index 3 of x end root end exponent – 1 right parenthesis end fraction (x not equal to 0), then stack l i m with x rightwards arrow 0 below f ' (x) is -

    If f(x) is the primitive of fraction numerator sin invisible function application root index 3 of x end root log invisible function application left parenthesis 1 plus 3 x right parenthesis over denominator left parenthesis tan to the power of – 1 end exponent invisible function application square root of x right parenthesis to the power of 2 end exponent left parenthesis e to the power of root index 3 of x end root end exponent – 1 right parenthesis end fraction (x not equal to 0), then stack l i m with x rightwards arrow 0 below f ' (x) is -

    Maths-General
    General
    Maths-

    If f(x) is the primitive of fraction numerator sin invisible function application root index 3 of x end root log invisible function application left parenthesis 1 plus 3 x right parenthesis over denominator left parenthesis tan to the power of negative 1 end exponent invisible function application square root of x right parenthesis to the power of 2 end exponent left parenthesis e to the power of root index 3 of x end root end exponent minus 1 right parenthesis end fraction(x not equal to 0), then stack l i m with x rightwards arrow 0 below f ´ left parenthesis x right parenthesis is-

    If f(x) is the primitive of fraction numerator sin invisible function application root index 3 of x end root log invisible function application left parenthesis 1 plus 3 x right parenthesis over denominator left parenthesis tan to the power of negative 1 end exponent invisible function application square root of x right parenthesis to the power of 2 end exponent left parenthesis e to the power of root index 3 of x end root end exponent minus 1 right parenthesis end fraction(x not equal to 0), then stack l i m with x rightwards arrow 0 below f ´ left parenthesis x right parenthesis is-

    Maths-General
    parallel
    General
    maths-

    If f left parenthesis x right parenthesis equals open vertical bar table row cell s i n invisible function application x end cell cell s i n invisible function application a end cell cell s i n invisible function application b end cell row cell c o s invisible function application x end cell cell c o s invisible function application a end cell cell c o s invisible function application b end cell row cell t a n invisible function application x end cell cell t a n invisible function application a end cell cell t a n invisible function application b end cell end table close vertical bar where 0 less than a less than b less than fraction numerator pi over denominator 2 end fraction hen the equation f(x) = 0 has, in the interval (a, b)

    If f left parenthesis x right parenthesis equals open vertical bar table row cell s i n invisible function application x end cell cell s i n invisible function application a end cell cell s i n invisible function application b end cell row cell c o s invisible function application x end cell cell c o s invisible function application a end cell cell c o s invisible function application b end cell row cell t a n invisible function application x end cell cell t a n invisible function application a end cell cell t a n invisible function application b end cell end table close vertical bar where 0 less than a less than b less than fraction numerator pi over denominator 2 end fraction hen the equation f(x) = 0 has, in the interval (a, b)

    maths-General
    General
    physics-

    The velocity-time graph of a particle moving along a straight line is shown in figure. The displacement of the body in 5s is

    The velocity-time graph of a particle moving along a straight line is shown in figure. The displacement of the body in 5s is

    physics-General
    General
    maths-

    Let f x( ) and g x( ) are defined and differentiable for x greater or equal than x subscript 0 end subscript and f open parentheses x subscript 0 close parentheses equals g open parentheses x subscript 0 close parentheses comma f to the power of ´ left parenthesis x right parenthesis greater than straight g to the power of straight prime left parenthesis x right parenthesis text  for  end text x greater than x subscript 0 then

    Let f x( ) and g x( ) are defined and differentiable for x greater or equal than x subscript 0 end subscript and f open parentheses x subscript 0 close parentheses equals g open parentheses x subscript 0 close parentheses comma f to the power of ´ left parenthesis x right parenthesis greater than straight g to the power of straight prime left parenthesis x right parenthesis text  for  end text x greater than x subscript 0 then

    maths-General
    parallel
    General
    maths-

    In the given figure, if POQ is a diameter of the circle and PR = QR, then RPQ is

    In the given figure, if POQ is a diameter of the circle and PR = QR, then RPQ is

    maths-General
    General
    maths-

    In the given figure, find the values of ‘x’ and ‘y’

    In the given figure, find the values of ‘x’ and ‘y’

    maths-General
    General
    maths-

    PQRS is a cyclic quadrilateral and PQ is the diameter of the circle. If QPR= ° 35 , then the value of PSR is

    PQRS is a cyclic quadrilateral and PQ is the diameter of the circle. If QPR= ° 35 , then the value of PSR is

    maths-General
    parallel
    General
    maths-

    Find the value of ‘x’ in the given figure

    Find the value of ‘x’ in the given figure

    maths-General
    General
    maths-

    In the given figure, find PR

    In the given figure, find PR

    maths-General
    General
    maths-

    In the given figure PA, PB, EC, FB, FD and ED are tangents to the circle. If PA=13cm,CE = 4.5cm and EF = 9cm then PF is

    In the given figure PA, PB, EC, FB, FD and ED are tangents to the circle. If PA=13cm,CE = 4.5cm and EF = 9cm then PF is

    maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.