Maths-
General
Easy

Question

Inverse of the matrix open square brackets table row 3 cell – 2 end cell cell – 1 end cell row cell – 4 end cell 1 cell – 1 end cell row 2 0 1 end table close square brackets is

  1. open square brackets table row 1 2 3 row 3 3 7 row cell – 2 end cell cell – 4 end cell cell – 5 end cell end table close square brackets    
  2. open square brackets table row 1 2 3 row 2 5 7 row cell – 2 end cell cell – 4 end cell cell – 5 end cell end table close square brackets    
  3. open square brackets table row 1 cell – 3 end cell 5 row 7 4 6 row 4 2 7 end table close square brackets    
  4. open square brackets table row 1 2 cell – 4 end cell row 8 cell – 4 end cell cell – 5 end cell row 3 5 2 end table close square brackets    

The correct answer is: open square brackets table row 1 2 3 row 2 5 7 row cell – 2 end cell cell – 4 end cell cell – 5 end cell end table close square brackets


    |A| = open vertical bar table row 3 cell – 2 end cell cell – 1 end cell row cell – 4 end cell 1 cell – 1 end cell row 2 0 1 end table close vertical bar
    = 3(1) + 2 (– 4 + 2) – 1 (0 – 2)
    = 3 – 4 + 2 = 1
    adj A = open square brackets table row 1 2 cell – 2 end cell row 2 5 cell – 4 end cell row 3 7 cell – 5 end cell end table close square brackets to the power of T end exponent = open square brackets table row 1 2 3 row 2 5 7 row cell – 2 end cell cell – 4 end cell cell – 5 end cell end table close square brackets
    A–1 = fraction numerator A d j A over denominator vertical line A vertical line end fraction = open square brackets table row 1 2 3 row 2 5 7 row cell – 2 end cell cell – 4 end cell cell – 5 end cell end table close square brackets

    Related Questions to study

    General
    maths-

    If A = open square brackets table row 2 cell – 1 end cell row cell – 1 end cell 2 end table close square brackets and A2 – 4A – n I = 0, then n is equal to

    If A = open square brackets table row 2 cell – 1 end cell row cell – 1 end cell 2 end table close square brackets and A2 – 4A – n I = 0, then n is equal to

    maths-General
    General
    maths-

    The value of x for which the matrix product open square brackets table attributes columnalign center center center columnspacing 1em end attributes row 2 0 7 row 0 1 0 row 1 cell negative 2 end cell 1 end table close square brackets open square brackets table row cell – x end cell cell 14 x end cell cell 7 x end cell row 0 1 0 row x cell – 4 x end cell cell – 2 x end cell end table close square bracketsequal an identity matrix is :

    The value of x for which the matrix product open square brackets table attributes columnalign center center center columnspacing 1em end attributes row 2 0 7 row 0 1 0 row 1 cell negative 2 end cell 1 end table close square brackets open square brackets table row cell – x end cell cell 14 x end cell cell 7 x end cell row 0 1 0 row x cell – 4 x end cell cell – 2 x end cell end table close square bracketsequal an identity matrix is :

    maths-General
    General
    maths-

    If A = open square brackets table row 1 2 row 3 5 end table close square brackets, then A–1 is equal to :

    If A = open square brackets table row 1 2 row 3 5 end table close square brackets, then A–1 is equal to :

    maths-General
    parallel
    General
    maths-

    If A is a singular matrix, then adj A is :

    If A is a singular matrix, then adj A is :

    maths-General
    General
    Maths-

    Statement - I The value of x for which (sin x + cos x)1 + sin 2x = 2, when 0 ≤ x ≤ , is straight pi divided by 4 only.

    Statement - II The maximum value of sin x + cos x occurs when x =straight pi divided by 4

    In this question, we have to find the statements are the correct or not and statement 2 is correct explanation or not, is same as assertion and reason.

    Statement - I The value of x for which (sin x + cos x)1 + sin 2x = 2, when 0 ≤ x ≤ , is straight pi divided by 4 only.

    Statement - II The maximum value of sin x + cos x occurs when x =straight pi divided by 4

    Maths-General

    In this question, we have to find the statements are the correct or not and statement 2 is correct explanation or not, is same as assertion and reason.

    General
    maths-

    If [1 2 3 ]A = [4 5], the order of matrix A is :

    If [1 2 3 ]A = [4 5], the order of matrix A is :

    maths-General
    parallel
    General
    maths-

    Let A and B be 3 × 3 matrices, then AB = O implies:

    Let A and B be 3 × 3 matrices, then AB = O implies:

    maths-General
    General
    maths-

    If A = open square brackets table row 1 2 row 3 cell negative 5 end cell end table close square brackets, B = open square brackets table row 1 0 row 0 2 end table close square brackets and X is a matrix such that A = B X. Then X equals

    If A = open square brackets table row 1 2 row 3 cell negative 5 end cell end table close square brackets, B = open square brackets table row 1 0 row 0 2 end table close square brackets and X is a matrix such that A = B X. Then X equals

    maths-General
    General
    maths-

    If k open square brackets table row cell negative 1 end cell 2 2 row 2 cell negative 1 end cell 2 row 2 2 cell negative 1 end cell end table close square brackets is an orthogonal matrix then k is equal to

    If k open square brackets table row cell negative 1 end cell 2 2 row 2 cell negative 1 end cell 2 row 2 2 cell negative 1 end cell end table close square brackets is an orthogonal matrix then k is equal to

    maths-General
    parallel
    General
    maths-

    If f(α) = open square brackets table row cell cos invisible function application alpha end cell cell sin invisible function application alpha end cell row cell negative sin invisible function application alpha end cell cell cos invisible function application alpha end cell end table close square brackets and alpha comma beta comma gamma are angles of triangle then f(alpha). f(beta).f (gamma) =

    If f(α) = open square brackets table row cell cos invisible function application alpha end cell cell sin invisible function application alpha end cell row cell negative sin invisible function application alpha end cell cell cos invisible function application alpha end cell end table close square brackets and alpha comma beta comma gamma are angles of triangle then f(alpha). f(beta).f (gamma) =

    maths-General
    General
    maths-

    If A is idempotent and A + B = I, then which of the following true?

    If A is idempotent and A + B = I, then which of the following true?

    maths-General
    General
    chemistry-

    Which of the following is not a disporportionation reaction?

    Which of the following is not a disporportionation reaction?

    chemistry-General
    parallel
    General
    maths-

    If f(alpha) = open square brackets table row cell cos invisible function application alpha end cell cell negative sin invisible function application alpha end cell 0 row cell sin invisible function application alpha end cell cell cos invisible function application alpha end cell 0 row 0 0 1 end table close square brackets, then open square brackets f left parenthesis alpha right parenthesis close square brackets to the power of negative 1 end exponent =

    If f(alpha) = open square brackets table row cell cos invisible function application alpha end cell cell negative sin invisible function application alpha end cell 0 row cell sin invisible function application alpha end cell cell cos invisible function application alpha end cell 0 row 0 0 1 end table close square brackets, then open square brackets f left parenthesis alpha right parenthesis close square brackets to the power of negative 1 end exponent =

    maths-General
    General
    maths-

    If A = open square brackets table row 0 1 2 row 1 2 3 row 3 a 1 end table close square brackets and A–1 = open square brackets table row cell 1 divided by 2 end cell cell negative 1 divided by 2 end cell cell 1 divided by 2 end cell row cell negative 4 end cell 3 c row cell 5 divided by 2 end cell cell negative 3 divided by 2 end cell cell 1 divided by 2 end cell end table close square brackets then value of a and c is -

    If A = open square brackets table row 0 1 2 row 1 2 3 row 3 a 1 end table close square brackets and A–1 = open square brackets table row cell 1 divided by 2 end cell cell negative 1 divided by 2 end cell cell 1 divided by 2 end cell row cell negative 4 end cell 3 c row cell 5 divided by 2 end cell cell negative 3 divided by 2 end cell cell 1 divided by 2 end cell end table close square brackets then value of a and c is -

    maths-General
    General
    maths-

    A skew symmetric matrix S satisfies the relation S2 + I = 0, where I is a unit matrix, then SS´ is -

    A skew symmetric matrix S satisfies the relation S2 + I = 0, where I is a unit matrix, then SS´ is -

    maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.