Maths-
General
Easy
Question
Let
, then
is equal to:
The correct answer is: 
Related Questions to study
maths-
Statement I : y = f(x) =
, x
R Range of f(x) is [3/4, 1)
Statement II :
.
Statement I : y = f(x) =
, x
R Range of f(x) is [3/4, 1)
Statement II :
.
maths-General
maths-
Statement I : Function f(x) = sinx + {x} is periodic with period 
Statement II : sin x and {x} are both periodic with period
and 1 respectively.
Statement I : Function f(x) = sinx + {x} is periodic with period 
Statement II : sin x and {x} are both periodic with period
and 1 respectively.
maths-General
maths-
Statement 1 : f : R
R and
is bijective.
Statement 2 :
is bijective.
Statement 1 : f : R
R and
is bijective.
Statement 2 :
is bijective.
maths-General
maths-
Statement I : Graph of y = tan x is symmetrical about origin
Statement II : Graph of
is symmetrical about y-axis
Statement I : Graph of y = tan x is symmetrical about origin
Statement II : Graph of
is symmetrical about y-axis
maths-General
maths-
Statement-
If
Where
is an identity function.
Statement-
R defined by
is an identity function.
Statement-
If
Where
is an identity function.
Statement-
R defined by
is an identity function.
maths-General
Maths-
Assertion (A) :
Graph of 
Reason (R) : In the expression am/n, where a, m, n × J+, m represents the power to which a is be raised, whereas n determines the root to be taken; these two processes may be administered in either order with the same result.
Assertion (A) :
Graph of 
Reason (R) : In the expression am/n, where a, m, n × J+, m represents the power to which a is be raised, whereas n determines the root to be taken; these two processes may be administered in either order with the same result.
Maths-General
maths-
Assertion: The period of
is 1/2.
Reason: The period of x – [x] is 1.
Assertion: The period of
is 1/2.
Reason: The period of x – [x] is 1.
maths-General
Maths-
Assertion : Fundamental period of
.
Reason : If the period of f(x) is
and the period of g(x) is
, then the fundamental period of f(x) + g(x) is the L.C.M. of
and T
Assertion : Fundamental period of
.
Reason : If the period of f(x) is
and the period of g(x) is
, then the fundamental period of f(x) + g(x) is the L.C.M. of
and T
Maths-General
Maths-
Assertion: The function defined by
is invertible if and only if
.
Reason: A function is invertible if and only if it is one-to-one and onto function.
Assertion: The function defined by
is invertible if and only if
.
Reason: A function is invertible if and only if it is one-to-one and onto function.
Maths-General
Maths-
Assertion :
can never become positive.
Reason : f(x) = sgn x is always a positive function.
Assertion :
can never become positive.
Reason : f(x) = sgn x is always a positive function.
Maths-General
Maths-
If f (x) = 
If f (x) = 
Maths-General
Maths-
The value of the integral
dx is :
The value of the integral
dx is :
Maths-General
Maths-
Assertion : Let
be a function defined by f(x) =
. Then f is many-one function.
Reason : If either
or
domain of f, then y = f(x) is one-one function.</span
Assertion : Let
be a function defined by f(x) =
. Then f is many-one function.
Reason : If either
or
domain of f, then y = f(x) is one-one function.</span
Maths-General
Maths-
Assertion : Fundamental period of
.
Reason : If the period of f(x) is
and the period of g(x) is
, then the fundamental period of f(x) + g(x) is the L.C.M. of
and T
Assertion : Fundamental period of
.
Reason : If the period of f(x) is
and the period of g(x) is
, then the fundamental period of f(x) + g(x) is the L.C.M. of
and T
Maths-General
Maths-
Function
f(x) = 2x + 1 is-
Function
f(x) = 2x + 1 is-
Maths-General