Physics-
General
Easy

Question

Two identical uniform solid spherical balls A & B of mass m each are placed on a fixed wedge as shown in figure. Ball B is kept at rest and it is released just before two balls collides. Ball A rolls down without slipping on inclined plane & collide elastically with ball B. The kinetic energy of ball A just after the collision with ball B is :

  1. fraction numerator m g h over denominator 7 end fraction    
  2. fraction numerator m g h over denominator 2 end fraction    
  3. fraction numerator 2 m g h over denominator 5 end fraction    
  4. fraction numerator 7 m g h over denominator 5 end fraction    

The correct answer is: fraction numerator m g h over denominator 7 end fraction

Related Questions to study

General
physics-

A child with mass m is standing at the edge of a playground merry-go-round (A large uniform disc which rotates in horizontal plane about a fixed vertical axis in parks) with moment of inertia I, radius R, and initial angular velocity omega as shown in figure. The child jumps off the edge of the merry-go-round with a velocity v with respect to the ground in direction tangent to periphery of the disc as shown. The new angular velocity of the merry-go-round is:

A child with mass m is standing at the edge of a playground merry-go-round (A large uniform disc which rotates in horizontal plane about a fixed vertical axis in parks) with moment of inertia I, radius R, and initial angular velocity omega as shown in figure. The child jumps off the edge of the merry-go-round with a velocity v with respect to the ground in direction tangent to periphery of the disc as shown. The new angular velocity of the merry-go-round is:

physics-General
General
physics-

A uniform solid sphere rolls up (without slipping) the rough fixed inclined plane, and then back down. Which is the correct graph of acceleration 'a' of centre of mass of solid sphere as function of time t (for the duration sphere is on the incline)? Assume that the sphere rolling up has a positive velocity

A uniform solid sphere rolls up (without slipping) the rough fixed inclined plane, and then back down. Which is the correct graph of acceleration 'a' of centre of mass of solid sphere as function of time t (for the duration sphere is on the incline)? Assume that the sphere rolling up has a positive velocity

physics-General
General
physics-

Two identical uniform discs of mass m and radius r are arranged as shown in the figure. If alphais the angular acceleration of the lower disc and a cm is acceleration of centre of mass of the lower disc, then relation among a subscript c m end subscript comma alpha & r is :

Two identical uniform discs of mass m and radius r are arranged as shown in the figure. If alphais the angular acceleration of the lower disc and a cm is acceleration of centre of mass of the lower disc, then relation among a subscript c m end subscript comma alpha & r is :

physics-General
parallel
General
physics-

Figure shows an arrangement of masses hanging from a ceiling. In equilibrium, each rod is horizontal, has negligible mass and extends three times as far to the right of the wire supporting it as to the left. If mass m subscript 4 end subscript is 48 kg then mass m subscript 1 end subscript is equal to

Figure shows an arrangement of masses hanging from a ceiling. In equilibrium, each rod is horizontal, has negligible mass and extends three times as far to the right of the wire supporting it as to the left. If mass m subscript 4 end subscript is 48 kg then mass m subscript 1 end subscript is equal to

physics-General
General
physics-

A uniform thin rod is bent in the form of closed loop ABCDEFA as shown in the figure.
The ratio of moment of inertia of the loop about x-axis to that about y-axis is

A uniform thin rod is bent in the form of closed loop ABCDEFA as shown in the figure.
The ratio of moment of inertia of the loop about x-axis to that about y-axis is

physics-General
General
physics-

In the figure shown, a small solid spherical ball of mass 'm' can move without sliding in a fixed semicircular track of radius R in vertical plane. It is released from the top. The resultant force on the ball at the lowest point of the track is

In the figure shown, a small solid spherical ball of mass 'm' can move without sliding in a fixed semicircular track of radius R in vertical plane. It is released from the top. The resultant force on the ball at the lowest point of the track is

physics-General
parallel
General
physics-

A ball of mass m moving with constant velocity u collides with a smooth horizontal surface at O as shown. Neglect gravity and friction. The y-axis is drawn normal to the horizontal surface at the point of impact O and x-axis is horizontal as shown in the figure. About which point will the angular momentum of ball be conserved.

A ball of mass m moving with constant velocity u collides with a smooth horizontal surface at O as shown. Neglect gravity and friction. The y-axis is drawn normal to the horizontal surface at the point of impact O and x-axis is horizontal as shown in the figure. About which point will the angular momentum of ball be conserved.

physics-General
General
physics-

A particle of mass m is moving at speed v perpendicular to a rod of length d and mass M = 6m which pivots around a frictionless axle running through its centre. It strikes and sticks to the end of the rod. The moment of inertia of the rod about its centre is M d to the power of 2 end exponent divided by 12. Then the angular speed of the system just after the collision is

A particle of mass m is moving at speed v perpendicular to a rod of length d and mass M = 6m which pivots around a frictionless axle running through its centre. It strikes and sticks to the end of the rod. The moment of inertia of the rod about its centre is M d to the power of 2 end exponent divided by 12. Then the angular speed of the system just after the collision is

physics-General
General
physics-

A uniform rod of length l is sliding such that one of its ends is always in contact with a vertical wall and its other end is always in contact with horizontal surface. Just after the rod is released from rest, the magnitude of acceleration of end points of the rod are a and b respectively. The angular acceleration of rod at this instant will be

A uniform rod of length l is sliding such that one of its ends is always in contact with a vertical wall and its other end is always in contact with horizontal surface. Just after the rod is released from rest, the magnitude of acceleration of end points of the rod are a and b respectively. The angular acceleration of rod at this instant will be

physics-General
parallel
General
physics-

A uniform rod of mass M and length L lies radially on a disc rotating with angular speed omega in a horizontal plane about its axis. The rod does not slip on the disc and the centre of the rod is at a distance R from the centre of the disc. Then the kinetic energy of the rod is :

A uniform rod of mass M and length L lies radially on a disc rotating with angular speed omega in a horizontal plane about its axis. The rod does not slip on the disc and the centre of the rod is at a distance R from the centre of the disc. Then the kinetic energy of the rod is :

physics-General
General
physics-

A uniform rod of mass m, length lambda is placed over a smooth horizontal surface along y-axis and is at rest as shown in figure. An impulsive force F is applied for a small time capital deltat along x-direction at point A. The x–coordinate of end A of the rod when the rod becomes parallel to x–axis for the first time is (initially the coordinate of centre of mass of the rod is (0, 0)):

A uniform rod of mass m, length lambda is placed over a smooth horizontal surface along y-axis and is at rest as shown in figure. An impulsive force F is applied for a small time capital deltat along x-direction at point A. The x–coordinate of end A of the rod when the rod becomes parallel to x–axis for the first time is (initially the coordinate of centre of mass of the rod is (0, 0)):

physics-General
General
physics-

A uniform equilateral prism of mass m rests on a rough horizontal surface with coefficient of friction mu. A horizontal force F is applied on the prism as shown in the figure. If the coefficient of friction is sufficiently high so that the prism does not slide before toppling, then the minimum force required to topple the prism is :

A uniform equilateral prism of mass m rests on a rough horizontal surface with coefficient of friction mu. A horizontal force F is applied on the prism as shown in the figure. If the coefficient of friction is sufficiently high so that the prism does not slide before toppling, then the minimum force required to topple the prism is :

physics-General
parallel
General
physics-

A small block of mass blank to the power of ´ end exponent m to the power of ´ end exponent is rigidly attached at ‘P’ to a ring of mass blank to the power of ´ end exponent 3 m to the power of ´ end exponentand radius text ´r´ end text. The system is released from rest at theta equals 90 to the power of ring operator end exponent and rolls without sliding. The angular acceleration of hoop just after release is –

A small block of mass blank to the power of ´ end exponent m to the power of ´ end exponent is rigidly attached at ‘P’ to a ring of mass blank to the power of ´ end exponent 3 m to the power of ´ end exponentand radius text ´r´ end text. The system is released from rest at theta equals 90 to the power of ring operator end exponent and rolls without sliding. The angular acceleration of hoop just after release is –

physics-General
General
physics-

A uniform disc is performing pure rolling on a smooth stationary surface with constant angular velocity as shown in figure. At any instant, for the lowermost point of the disc

A uniform disc is performing pure rolling on a smooth stationary surface with constant angular velocity as shown in figure. At any instant, for the lowermost point of the disc

physics-General
General
physics-

A square plate of edge a/2 is cut out from a uniform square plate of edge 'a' as shown in figure. The mass of the remaining portion is M. The moment of inertia of the shaded portion about an axis passing through 'O' (centre of the square of side a) and perpendicular to plane of the plate is :

A square plate of edge a/2 is cut out from a uniform square plate of edge 'a' as shown in figure. The mass of the remaining portion is M. The moment of inertia of the shaded portion about an axis passing through 'O' (centre of the square of side a) and perpendicular to plane of the plate is :

physics-General
parallel

card img

With Turito Academy.

card img

With Turito Foundation.

card img

Get an Expert Advice From Turito.

Turito Academy

card img

With Turito Academy.

Test Prep

card img

With Turito Foundation.