Maths-
General
Easy

Question

The centres of two circles are 5 square root of 2 units apart. The circles are orthogonal and their radii are integers not equal to 1. The area of the region, in square units, common to the two circles, is

  1. fraction numerator 25 over denominator 4 end fraction left parenthesis pi minus 2 right parenthesis    
  2. fraction numerator 25 over denominator 2 end fraction left parenthesis pi minus 2 right parenthesis    
  3. fraction numerator 25 over denominator 4 end fraction left parenthesis pi minus 3 right parenthesis    
  4. fraction numerator 25 over denominator 2 end fraction left parenthesis pi minus 3 right parenthesis    

The correct answer is: fraction numerator 25 over denominator 2 end fraction left parenthesis pi minus 2 right parenthesis


    The radii are 5 units each. Let S be the area common to the circles fraction numerator 25 pi over denominator 4 end fraction plus fraction numerator 25 pi over denominator 4 end fraction minus S equals 25

    Related Questions to study

    General
    maths-

    If two chords, each bisected by the x - axis can be drawn to the circle, 2 open parentheses x to the power of 2 end exponent plus y to the power of 2 end exponent close parentheses minus 2 a x minus b y equals 0 left parenthesis a not equal to 0 comma b not equal to 0 right parenthesis text end textfrom the point text end text left parenthesis a comma b divided by 2 right parenthesis text end textthen :

    If two chords, each bisected by the x - axis can be drawn to the circle, 2 open parentheses x to the power of 2 end exponent plus y to the power of 2 end exponent close parentheses minus 2 a x minus b y equals 0 left parenthesis a not equal to 0 comma b not equal to 0 right parenthesis text end textfrom the point text end text left parenthesis a comma b divided by 2 right parenthesis text end textthen :

    maths-General
    General
    maths-

    The radius of the least circle passing through the point (8, 4) and cutting the circle x to the power of 2 end exponent plus y to the power of 2 end exponent equals 40 orthogonally is

    The radius of the least circle passing through the point (8, 4) and cutting the circle x to the power of 2 end exponent plus y to the power of 2 end exponent equals 40 orthogonally is

    maths-General
    General
    maths-

    P(3,2) is a point on the circle x to the power of 2 end exponent plus y to the power of 2 end exponent equals 13 Two points A, B are on the circle such that P A equals P B equals square root of 5 The equation of chord AB is

    P(3,2) is a point on the circle x to the power of 2 end exponent plus y to the power of 2 end exponent equals 13 Two points A, B are on the circle such that P A equals P B equals square root of 5 The equation of chord AB is

    maths-General
    parallel
    General
    maths-

    Statement – 1: Two circles of radii square root of 3 & 1 cut orthogonally then area of common region is fraction numerator 5 pi minus 6 square root of 3 over denominator 6 end fraction square unit.
    Statement -2: Area text end text left parenthesis A union B right parenthesis equals text  AreaA  end text plus text  Area  end text left parenthesis B right parenthesis minus text  Area  end text left parenthesis A intersection B right parenthesis, where A & B represents two regions

    Statement – 1: Two circles of radii square root of 3 & 1 cut orthogonally then area of common region is fraction numerator 5 pi minus 6 square root of 3 over denominator 6 end fraction square unit.
    Statement -2: Area text end text left parenthesis A union B right parenthesis equals text  AreaA  end text plus text  Area  end text left parenthesis B right parenthesis minus text  Area  end text left parenthesis A intersection B right parenthesis, where A & B represents two regions

    maths-General
    General
    maths-

    Statement (I) : 27, 8 and 12 can be three terms of G.P. as well as an A.P
    Statement (II) : Three non-zero real numbers can always be three terms of an A.P

    Statement (I) : 27, 8 and 12 can be three terms of G.P. as well as an A.P
    Statement (II) : Three non-zero real numbers can always be three terms of an A.P

    maths-General
    General
    maths-

    The value of blank to the power of n end exponent C subscript 1 end subscript minus open parentheses 1 plus fraction numerator 1 over denominator 2 end fraction close parentheses blank to the power of n end exponent C subscript 2 end subscript plus open parentheses 1 plus fraction numerator 1 over denominator 2 end fraction plus fraction numerator 1 over denominator 3 end fraction close parentheses blank to the power of n end exponent C subscript 3 end subscript minus horizontal ellipsis horizontal ellipsis horizontal ellipsis. plus left parenthesis negative 1 right parenthesis to the power of n minus 1 end exponent open parentheses 1 plus fraction numerator 1 over denominator 2 end fraction plus fraction numerator 1 over denominator 3 end fraction plus horizontal ellipsis horizontal ellipsis horizontal ellipsis times fraction numerator 1 over denominator n end fraction close parentheses blank to the power of n end exponent C subscript n end subscript text  is end text

    The value of blank to the power of n end exponent C subscript 1 end subscript minus open parentheses 1 plus fraction numerator 1 over denominator 2 end fraction close parentheses blank to the power of n end exponent C subscript 2 end subscript plus open parentheses 1 plus fraction numerator 1 over denominator 2 end fraction plus fraction numerator 1 over denominator 3 end fraction close parentheses blank to the power of n end exponent C subscript 3 end subscript minus horizontal ellipsis horizontal ellipsis horizontal ellipsis. plus left parenthesis negative 1 right parenthesis to the power of n minus 1 end exponent open parentheses 1 plus fraction numerator 1 over denominator 2 end fraction plus fraction numerator 1 over denominator 3 end fraction plus horizontal ellipsis horizontal ellipsis horizontal ellipsis times fraction numerator 1 over denominator n end fraction close parentheses blank to the power of n end exponent C subscript n end subscript text  is end text

    maths-General
    parallel
    General
    maths-

    If text end text open parentheses 1 plus x plus x to the power of 2 end exponent close parentheses to the power of n end exponent equals a subscript 0 end subscript plus a subscript 1 end subscript x plus a subscript 2 end subscript x to the power of 2 end exponent plus horizontal ellipsis plus a subscript 2 n end subscript x to the power of 2 n end exponent comma text  then  end text a subscript 0 end subscript a subscript 1 end subscript minus a subscript 1 end subscript a subscript 2 end subscript plus a subscript 2 end subscript a subscript 3 end subscript minus a subscript 3 end subscript a subscript 4 end subscript plus horizontal ellipsis is equal to

    If text end text open parentheses 1 plus x plus x to the power of 2 end exponent close parentheses to the power of n end exponent equals a subscript 0 end subscript plus a subscript 1 end subscript x plus a subscript 2 end subscript x to the power of 2 end exponent plus horizontal ellipsis plus a subscript 2 n end subscript x to the power of 2 n end exponent comma text  then  end text a subscript 0 end subscript a subscript 1 end subscript minus a subscript 1 end subscript a subscript 2 end subscript plus a subscript 2 end subscript a subscript 3 end subscript minus a subscript 3 end subscript a subscript 4 end subscript plus horizontal ellipsis is equal to

    maths-General
    General
    maths-

    Total number of divisors of n equals 2 to the power of 5 end exponent times 3 to the power of 5 end exponent times 5 to the power of 10 end exponent times 7 to the power of 2 end exponent that are of the form 4 lambda plus 2 comma lambda greater or equal than 1 is equal to

    Total number of divisors of n equals 2 to the power of 5 end exponent times 3 to the power of 5 end exponent times 5 to the power of 10 end exponent times 7 to the power of 2 end exponent that are of the form 4 lambda plus 2 comma lambda greater or equal than 1 is equal to

    maths-General
    General
    maths-

    If the sum of the coefficients in the expansion of left parenthesis q plus r right parenthesis to the power of 20 end exponent left parenthesis 1 plus left parenthesis p minus 2 right parenthesis x right parenthesis to the power of 20 end exponent is equal to square of the sum of the coefficients in the expansion of left square bracket 2 r q x minus left parenthesis r plus q right parenthesis times y right square bracket to the power of 10 end exponent text  , where  end text p comma r comma q are positive constants, then

    If the sum of the coefficients in the expansion of left parenthesis q plus r right parenthesis to the power of 20 end exponent left parenthesis 1 plus left parenthesis p minus 2 right parenthesis x right parenthesis to the power of 20 end exponent is equal to square of the sum of the coefficients in the expansion of left square bracket 2 r q x minus left parenthesis r plus q right parenthesis times y right square bracket to the power of 10 end exponent text  , where  end text p comma r comma q are positive constants, then

    maths-General
    parallel
    General
    maths-

    If text end text stretchy sum from r equals 0 to n of   open curly brackets a subscript r end subscript left parenthesis x minus y plus 2 right parenthesis to the power of r end exponent minus b subscript r end subscript left parenthesis y minus x minus 1 right parenthesis to the power of r end exponent close curly brackets equals 0 for all n element of N comma text  then  end text b subscript n end subscript text end textis equal to

    If text end text stretchy sum from r equals 0 to n of   open curly brackets a subscript r end subscript left parenthesis x minus y plus 2 right parenthesis to the power of r end exponent minus b subscript r end subscript left parenthesis y minus x minus 1 right parenthesis to the power of r end exponent close curly brackets equals 0 for all n element of N comma text  then  end text b subscript n end subscript text end textis equal to

    maths-General
    General
    chemistry-

    Statement-1 : Silicones are resistant to heat, oxidation and most chemicals
    Statement-2 : The silicones(a) have stable silica-like six electron owing to high bond energy of Si – O bond and (b) have high strength of Si – C

    Statement-1 : Silicones are resistant to heat, oxidation and most chemicals
    Statement-2 : The silicones(a) have stable silica-like six electron owing to high bond energy of Si – O bond and (b) have high strength of Si – C

    chemistry-General
    General
    chemistry-

    Statement-1 : Boron forms only covalent compounds
    Statement-2 : Due to small size of boron, the sum of its first three ionisation enthalpies very high

    Statement-1 : Boron forms only covalent compounds
    Statement-2 : Due to small size of boron, the sum of its first three ionisation enthalpies very high

    chemistry-General
    parallel
    General
    chemistry-

    chemistry-General
    General
    chemistry-

    ConcH2SO4 cannot be used to prepare HBr from NaBr because it –

    ConcH2SO4 cannot be used to prepare HBr from NaBr because it –

    chemistry-General
    General
    chemistry-

    Three allotropes (A), (B) and (C) of phosphorous in the following change are respectively 

    Three allotropes (A), (B) and (C) of phosphorous in the following change are respectively 

    chemistry-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.