Maths-
General
Easy

Question

The curve y equals a x to the power of 3 end exponent plus b x to the power of 2 end exponent plus c x plus 5 touches the x‐axis at P(-2,0) and cuts the y ‐axis at a point Q left parenthesis O comma 5 right parenthesis where its gradient is 3 Then a+2b+c=-

  1. negative 1 divided by 2    
  2. negative 3 divided by 4    
  3. negative 3    
  4. 1    

The correct answer is: 1


    Since the curve y equals a x to the power of 3 end exponent plus b x to the power of 2 end exponent plus c x plus 5 touches x‐ axis at P left parenthesis negative 20 right parenthesis then x‐ axis is the tangent at left parenthesis negative 20 right parenthesis The curve meets y ‐axis in left parenthesis 05 right parenthesis We have
    fraction numerator d y over denominator d x end fraction equals 3 a x to the power of 2 end exponent plus 2 b x plus c

    and left parenthesis negative 20 right parenthesis lies on the curve then
    0 equals negative 8 a plus 4 b minus 2 c plus 5 blank equals 0 equals negative 8 a plus 4 b minus 1 blank c equals 3 right parenthesis
    equals 8 a minus 4 b plus 1 equals 0
    midline horizontal ellipsis midline horizontal ellipsis (3)
    From (2) and (3) we get a equals negative fraction numerator 1 over denominator 2 end fraction comma b equals negative fraction numerator 3 over denominator 4 end fraction
    Hence a equals negative fraction numerator 1 over denominator 2 end fraction comma b equals negative fraction numerator 3 over denominator 4 end fraction a n d c equals 3.

    Related Questions to study

    General
    maths-

    If open vertical bar table row alpha beta row gamma cell negative alpha end cell end table close vertical bar is to be square root of a determinant of the two rowed unit matrix, then alpha comma beta comma gamma should satisfy the relation

    If open vertical bar table row alpha beta row gamma cell negative alpha end cell end table close vertical bar is to be square root of a determinant of the two rowed unit matrix, then alpha comma beta comma gamma should satisfy the relation

    maths-General
    General
    maths-

    Matrix Ais given by A equals open curly brackets table attributes columnalign left end attributes row 3 11 row 2 8 end table close curly brackets then the determinant of A to the power of 2011 end exponent minus 5 A to the power of 2010 end exponent is

    Matrix Ais given by A equals open curly brackets table attributes columnalign left end attributes row 3 11 row 2 8 end table close curly brackets then the determinant of A to the power of 2011 end exponent minus 5 A to the power of 2010 end exponent is

    maths-General
    General
    maths-

    If A open parentheses table row 1 3 4 row 3 cell negative 1 end cell 5 row cell negative 2 end cell 4 cell negative 3 end cell end table close parentheses equals open parentheses table row 3 cell negative 1 end cell 5 row 1 3 4 row cell plus 4 end cell cell negative 8 end cell 6 end table close parentheses then A equals negative times

    If A open parentheses table row 1 3 4 row 3 cell negative 1 end cell 5 row cell negative 2 end cell 4 cell negative 3 end cell end table close parentheses equals open parentheses table row 3 cell negative 1 end cell 5 row 1 3 4 row cell plus 4 end cell cell negative 8 end cell 6 end table close parentheses then A equals negative times

    maths-General
    parallel
    General
    maths-

    If open vertical bar table row cell a blank b blank 1 end cell row cell b blank c blank 1 end cell row cell c blank a blank 1 end cell end table close vertical bar equals 2010 text  andif  end text open vertical bar table row cell c minus a end cell cell c minus b end cell cell a b end cell row cell a minus b end cell cell a minus c end cell cell b c end cell row cell b minus c end cell cell b minus a end cell cell c a end cell end table close vertical bar minus open vertical bar table row cell c minus a end cell cell c minus b end cell cell c to the power of 2 end exponent end cell row cell a minus b end cell cell a minus c end cell cell a to the power of 2 end exponent end cell row cell b minus c end cell cell b minus a end cell cell b to the power of 2 end exponent end cell end table close vertical bar equals p then the number of positive divisors of the number p is

    If open vertical bar table row cell a blank b blank 1 end cell row cell b blank c blank 1 end cell row cell c blank a blank 1 end cell end table close vertical bar equals 2010 text  andif  end text open vertical bar table row cell c minus a end cell cell c minus b end cell cell a b end cell row cell a minus b end cell cell a minus c end cell cell b c end cell row cell b minus c end cell cell b minus a end cell cell c a end cell end table close vertical bar minus open vertical bar table row cell c minus a end cell cell c minus b end cell cell c to the power of 2 end exponent end cell row cell a minus b end cell cell a minus c end cell cell a to the power of 2 end exponent end cell row cell b minus c end cell cell b minus a end cell cell b to the power of 2 end exponent end cell end table close vertical bar equals p then the number of positive divisors of the number p is

    maths-General
    General
    maths-

    The number of positive integral solutions of the equation open vertical bar table row cell y to the power of 3 end exponent plus 1 end cell cell y to the power of 2 end exponent z end cell cell y to the power of 2 end exponent x end cell row cell y z to the power of 2 end exponent end cell cell z to the power of 3 end exponent plus 1 end cell cell z to the power of 2 end exponent x end cell row cell y x to the power of 2 end exponent end cell cell X to the power of 2 end exponent Z end cell cell x to the power of 3 end exponent plus 1 end cell end table close vertical bar equals 11 is

    The number of positive integral solutions of the equation open vertical bar table row cell y to the power of 3 end exponent plus 1 end cell cell y to the power of 2 end exponent z end cell cell y to the power of 2 end exponent x end cell row cell y z to the power of 2 end exponent end cell cell z to the power of 3 end exponent plus 1 end cell cell z to the power of 2 end exponent x end cell row cell y x to the power of 2 end exponent end cell cell X to the power of 2 end exponent Z end cell cell x to the power of 3 end exponent plus 1 end cell end table close vertical bar equals 11 is

    maths-General
    General
    maths-

    If A comma B comma C comma D be real matrices (not necessasrily square) such that A to the power of T end exponent equals B C D comma B to the power of T end exponent equals C D A comma C to the power of T end exponent equals D A B comma D to the power of T end exponent equals A B C forthematrix S equals A B C D consider the statements I colon S to the power of 3 end exponent equals S capital pi colon S to the power of 2 end exponent equals S to the power of 4 end exponent

    If A comma B comma C comma D be real matrices (not necessasrily square) such that A to the power of T end exponent equals B C D comma B to the power of T end exponent equals C D A comma C to the power of T end exponent equals D A B comma D to the power of T end exponent equals A B C forthematrix S equals A B C D consider the statements I colon S to the power of 3 end exponent equals S capital pi colon S to the power of 2 end exponent equals S to the power of 4 end exponent

    maths-General
    parallel
    General
    maths-

    If l o g subscript 4 end subscript left parenthesis x plus 2 y right parenthesis plus l o g subscript 4 end subscript left parenthesis x minus 2 y right parenthesis equals 1, then
    Statement negative 1 colon left parenthesis vertical line x vertical line minus vertical line y vertical line right parenthesis subscript blank m i n blank end subscript equals square root of 3 because
    Statement negative 2:A.M greater or equal than G. M for R to the power of plus end exponent.

    If l o g subscript 4 end subscript left parenthesis x plus 2 y right parenthesis plus l o g subscript 4 end subscript left parenthesis x minus 2 y right parenthesis equals 1, then
    Statement negative 1 colon left parenthesis vertical line x vertical line minus vertical line y vertical line right parenthesis subscript blank m i n blank end subscript equals square root of 3 because
    Statement negative 2:A.M greater or equal than G. M for R to the power of plus end exponent.

    maths-General
    General
    maths-

    If alpha element of left parenthesis negative fraction numerator pi over denominator 2 end fraction comma 0 right parenthesis , then the value of t a n to the power of negative 1 end exponent left parenthesis blank c o t blank alpha right parenthesis minus c o t to the power of negative 1 end exponent left parenthesis blank t a n blank alpha right parenthesis is equal to

    If alpha element of left parenthesis negative fraction numerator pi over denominator 2 end fraction comma 0 right parenthesis , then the value of t a n to the power of negative 1 end exponent left parenthesis blank c o t blank alpha right parenthesis minus c o t to the power of negative 1 end exponent left parenthesis blank t a n blank alpha right parenthesis is equal to

    maths-General
    General
    maths-

    The minimum value of left parenthesis s e c to the power of negative 1 end exponent x right parenthesis to the power of 2 end exponent plus left parenthesis blank c o s blank e c to the power of negative 1 end exponent x right parenthesis to the power of 2 end exponent is

    The minimum value of left parenthesis s e c to the power of negative 1 end exponent x right parenthesis to the power of 2 end exponent plus left parenthesis blank c o s blank e c to the power of negative 1 end exponent x right parenthesis to the power of 2 end exponent is

    maths-General
    parallel
    General
    maths-

    If 5 f left parenthesis x right parenthesis plus 3 f left parenthesis fraction numerator 1 over denominator x end fraction right parenthesis equals x plus 2 andy equals x f (x)then fraction numerator d y over denominator d x end fraction at x=1 is

    If 5 f left parenthesis x right parenthesis plus 3 f left parenthesis fraction numerator 1 over denominator x end fraction right parenthesis equals x plus 2 andy equals x f (x)then fraction numerator d y over denominator d x end fraction at x=1 is

    maths-General
    General
    maths-

    Statement 1:Degree of differential equation 2 x minus 3 y plus 2 equals blank l o g blank left parenthesis fraction numerator d y over denominator d x end fraction 1 is not defined
    Statement 2: In the given D.E, the power of highest order derivative when expressed as a polynomials of derivatives is called degree

    Statement 1:Degree of differential equation 2 x minus 3 y plus 2 equals blank l o g blank left parenthesis fraction numerator d y over denominator d x end fraction 1 is not defined
    Statement 2: In the given D.E, the power of highest order derivative when expressed as a polynomials of derivatives is called degree

    maths-General
    General
    maths-

    The solution of e to the power of x y end exponent left parenthesis x y to the power of 2 end exponent d y plus y to the power of 3 end exponent d x right parenthesis plus e to the power of x divided by y end exponent left parenthesis y d x minus x d y right parenthesis equals 0 is

    The solution of e to the power of x y end exponent left parenthesis x y to the power of 2 end exponent d y plus y to the power of 3 end exponent d x right parenthesis plus e to the power of x divided by y end exponent left parenthesis y d x minus x d y right parenthesis equals 0 is

    maths-General
    parallel
    General
    maths-

    Solution of the equation fraction numerator d y over denominator d x end fraction equals fraction numerator y to the power of 2 end exponent minus y minus 2 over denominator x to the power of 2 end exponent plus 2 x minus 3 end fraction is minus( where c is arbitrary constant)

    Solution of the equation fraction numerator d y over denominator d x end fraction equals fraction numerator y to the power of 2 end exponent minus y minus 2 over denominator x to the power of 2 end exponent plus 2 x minus 3 end fraction is minus( where c is arbitrary constant)

    maths-General
    General
    Maths-

    Assertion (A) : If (2, 3) and (3,2) are respectively the orthocenters of capital delta A B C and capital delta D E F where D, E, F are mid points of sides of capital delta A B C respectively then the centroid of either triangle is Error converting from MathML to accessible text.
    Reason (R) :Circumcenters of triangles formed by mid‐points of sides of capital delta A B C and pedal triangle of capital delta A B C are same

    Assertion (A) : If (2, 3) and (3,2) are respectively the orthocenters of capital delta A B C and capital delta D E F where D, E, F are mid points of sides of capital delta A B C respectively then the centroid of either triangle is Error converting from MathML to accessible text.
    Reason (R) :Circumcenters of triangles formed by mid‐points of sides of capital delta A B C and pedal triangle of capital delta A B C are same

    Maths-General
    General
    physics-

    Two metallic strings A and B of different materials are connected in series forming a joint. The strings have similar cross-sectional area. The length of A is l subscript A end subscript equals 0.3 m and that of B is l subscript B end subscript equals 0.75 m. One end of the combined string is tied with a support rigidly and the other end is loaded with a block of mass m passing over a frictionless pulley. Transverse waves are setup in the combined string using an external source of variable frequency. The total number of antinodes at this frequency with joint as node is (the densities of A and B are 6.3 cross times 10 to the power of 3 end exponent k g m to the power of negative 3 end exponent text  and  end text 2.8 cross times 10 to the power of 3 end exponent k g m to the power of negative 3 end exponent respectively)

    Two metallic strings A and B of different materials are connected in series forming a joint. The strings have similar cross-sectional area. The length of A is l subscript A end subscript equals 0.3 m and that of B is l subscript B end subscript equals 0.75 m. One end of the combined string is tied with a support rigidly and the other end is loaded with a block of mass m passing over a frictionless pulley. Transverse waves are setup in the combined string using an external source of variable frequency. The total number of antinodes at this frequency with joint as node is (the densities of A and B are 6.3 cross times 10 to the power of 3 end exponent k g m to the power of negative 3 end exponent text  and  end text 2.8 cross times 10 to the power of 3 end exponent k g m to the power of negative 3 end exponent respectively)

    physics-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.