Maths-
General
Easy

Question

The equation of the directrix of the parabola y to the power of 2 end exponent plus 4 y plus 4 x plus 2 equals 0 comma i s colon

  1. x=-1    
  2. x=1    
  3. x equals negative fraction numerator 3 over denominator 2 end fraction    
  4. x equals 3 divided by 2    

The correct answer is: x equals 3 divided by 2


    Related Questions to study

    General
    Maths-

    The equation of the common tangent touching the circle left parenthesis x minus 3 right parenthesis to the power of 2 end exponent plus y to the power of 2 end exponent equals 9 and the parabola y to the power of 2 end exponent equals 4 x above the x‐axis is:

    The equation of the common tangent touching the circle left parenthesis x minus 3 right parenthesis to the power of 2 end exponent plus y to the power of 2 end exponent equals 9 and the parabola y to the power of 2 end exponent equals 4 x above the x‐axis is:

    Maths-General
    General
    Maths-

    If the line x‐1 =0 is the directrix of the parabola y to the power of 2 end exponent minus k x plus 8 equals 0, then one of the values of k is :

    If the line x‐1 =0 is the directrix of the parabola y to the power of 2 end exponent minus k x plus 8 equals 0, then one of the values of k is :

    Maths-General
    General
    maths-

    Assertion (A): Three normals are drawn from the point P’ with slopes m subscript 1 end subscript comma m subscript 2 end subscript comma m subscript 3 end subscript to the parabola y to the power of 2 end exponent equals 4 x If locus of ‘ P’ with m subscript 1 end subscript m subscript 2 end subscript equals alpha is a part of the parabola itself then alpha equals 2
    Reason (R): If normals at left parenthesis x subscript 1 end subscript comma y subscript 1 end subscript right parenthesis comma left parenthesis x subscript 2 end subscript comma y subscript 2 end subscript right parenthesis and left parenthesis y subscript 3 end subscript comma y subscript 3 end subscript right parenthesis are concurrent then y subscript 1 end subscript plus y subscript 2 end subscript plus y subscript 3 end subscript equals 0

    Assertion (A): Three normals are drawn from the point P’ with slopes m subscript 1 end subscript comma m subscript 2 end subscript comma m subscript 3 end subscript to the parabola y to the power of 2 end exponent equals 4 x If locus of ‘ P’ with m subscript 1 end subscript m subscript 2 end subscript equals alpha is a part of the parabola itself then alpha equals 2
    Reason (R): If normals at left parenthesis x subscript 1 end subscript comma y subscript 1 end subscript right parenthesis comma left parenthesis x subscript 2 end subscript comma y subscript 2 end subscript right parenthesis and left parenthesis y subscript 3 end subscript comma y subscript 3 end subscript right parenthesis are concurrent then y subscript 1 end subscript plus y subscript 2 end subscript plus y subscript 3 end subscript equals 0

    maths-General
    parallel
    General
    maths-

    ABCD and EFGC are squares and the curve y equals k square root of x passes through the origin D and the points B and F The ratio fraction numerator F G over denominator B C end fraction is:

    ABCD and EFGC are squares and the curve y equals k square root of x passes through the origin D and the points B and F The ratio fraction numerator F G over denominator B C end fraction is:

    maths-General
    General
    maths-

    Statement‐I :: With respect to a hyperbola fraction numerator x to the power of 2 end exponent over denominator 9 end fraction minus fraction numerator y to the power of 2 end exponent over denominator 16 end fraction equals 1 pependicular are drawn from a point (5, 0) on the lines 3 y plus-or-minus 4 x equals 0, then their feet lie on circle x to the power of 2 end exponent plus y to the power of 2 end exponent equals 16.
    Statement‐II :: If from any foci of a hyperbola perpendicular are drawn on the asymptotes of the hyperbola then their feet lie on auxiliary circle.

    Statement‐I :: With respect to a hyperbola fraction numerator x to the power of 2 end exponent over denominator 9 end fraction minus fraction numerator y to the power of 2 end exponent over denominator 16 end fraction equals 1 pependicular are drawn from a point (5, 0) on the lines 3 y plus-or-minus 4 x equals 0, then their feet lie on circle x to the power of 2 end exponent plus y to the power of 2 end exponent equals 16.
    Statement‐II :: If from any foci of a hyperbola perpendicular are drawn on the asymptotes of the hyperbola then their feet lie on auxiliary circle.

    maths-General
    General
    maths-

    A hyperbola, having the transverse axis of length 2 s i n, is confocal with the ellipse 3 x to the power of 2 end exponent plus 4 y to the power of 2 end exponent equals 12 Then its equation is ‐

    A hyperbola, having the transverse axis of length 2 s i n, is confocal with the ellipse 3 x to the power of 2 end exponent plus 4 y to the power of 2 end exponent equals 12 Then its equation is ‐

    maths-General
    parallel
    General
    Maths-

    The latus rectum of the hyperbola 16 x to the power of 2 end exponent minus 9 y to the power of 2 end exponent equals 144 is‐

    The latus rectum of the hyperbola 16 x to the power of 2 end exponent minus 9 y to the power of 2 end exponent equals 144 is‐

    Maths-General
    General
    maths-

    Statement‐I :: If a point open parentheses x subscript 1 end subscript comma blank y subscript 1 end subscript close parentheses lies in the shaded region fraction numerator x to the power of 2 end exponent over denominator a to the power of 2 end exponent end fraction minus fraction numerator y to the power of 2 end exponent over denominator b to the power of 2 end exponent end fraction equals 1, show in the figure, then fraction numerator x subscript 1 end subscript superscript 2 end superscript over denominator a to the power of 2 end exponent end fraction minus fraction numerator y subscript 1 end subscript superscript 2 end superscript over denominator b to the power of 2 end exponent end fraction less than 0
    Statement‐II :: P left parenthesis x subscript 1 end subscript comma blank y subscript 1 end subscript right parenthesis lies outside the hyperbola fraction numerator x to the power of 2 end exponent over denominator a to the power of 2 end exponent end fraction minus fraction numerator y to the power of 2 end exponent over denominator b to the power of 2 end exponent end fraction equals 1, then fraction numerator x subscript 1 end subscript superscript 2 end superscript over denominator a to the power of 2 end exponent end fraction minus fraction numerator y subscript 1 end subscript superscript 2 end superscript over denominator b to the power of 2 end exponent end fraction less than 1.

    Statement‐I :: If a point open parentheses x subscript 1 end subscript comma blank y subscript 1 end subscript close parentheses lies in the shaded region fraction numerator x to the power of 2 end exponent over denominator a to the power of 2 end exponent end fraction minus fraction numerator y to the power of 2 end exponent over denominator b to the power of 2 end exponent end fraction equals 1, show in the figure, then fraction numerator x subscript 1 end subscript superscript 2 end superscript over denominator a to the power of 2 end exponent end fraction minus fraction numerator y subscript 1 end subscript superscript 2 end superscript over denominator b to the power of 2 end exponent end fraction less than 0
    Statement‐II :: P left parenthesis x subscript 1 end subscript comma blank y subscript 1 end subscript right parenthesis lies outside the hyperbola fraction numerator x to the power of 2 end exponent over denominator a to the power of 2 end exponent end fraction minus fraction numerator y to the power of 2 end exponent over denominator b to the power of 2 end exponent end fraction equals 1, then fraction numerator x subscript 1 end subscript superscript 2 end superscript over denominator a to the power of 2 end exponent end fraction minus fraction numerator y subscript 1 end subscript superscript 2 end superscript over denominator b to the power of 2 end exponent end fraction less than 1.

    maths-General
    General
    Maths-

    Statement‐I The ellipse fraction numerator x to the power of 2 end exponent over denominator 16 end fraction plus fraction numerator y to the power of 2 end exponent over denominator 9 end fraction equals 1 and fraction numerator x to the power of 2 end exponent over denominator 9 end fraction plus fraction numerator y to the power of 2 end exponent over denominator 16 end fraction equals 1 are congruent.
    Statement‐II The ellipse fraction numerator x to the power of 2 end exponent over denominator 16 end fraction plus fraction numerator y to the power of 2 end exponent over denominator 9 end fraction equals 1 and fraction numerator x to the power of 2 end exponent over denominator 9 end fraction plus fraction numerator y to the power of 2 end exponent over denominator 16 end fraction equals 1 have the same eccentricity.

    For such questions, we should know properties of ellipse. We should know all the formulas related to ellipse. The axis which is larger is always the major axis.

    Statement‐I The ellipse fraction numerator x to the power of 2 end exponent over denominator 16 end fraction plus fraction numerator y to the power of 2 end exponent over denominator 9 end fraction equals 1 and fraction numerator x to the power of 2 end exponent over denominator 9 end fraction plus fraction numerator y to the power of 2 end exponent over denominator 16 end fraction equals 1 are congruent.
    Statement‐II The ellipse fraction numerator x to the power of 2 end exponent over denominator 16 end fraction plus fraction numerator y to the power of 2 end exponent over denominator 9 end fraction equals 1 and fraction numerator x to the power of 2 end exponent over denominator 9 end fraction plus fraction numerator y to the power of 2 end exponent over denominator 16 end fraction equals 1 have the same eccentricity.

    Maths-General

    For such questions, we should know properties of ellipse. We should know all the formulas related to ellipse. The axis which is larger is always the major axis.

    parallel
    General
    Maths-

    The minimum area of triangle formed by tangent to the ellipse fraction numerator x to the power of 2 end exponent over denominator a to the power of 2 end exponent end fraction plus fraction numerator y to the power of 2 end exponent over denominator b to the power of 2 end exponent end fraction equals 1 and coordinate axes‐

    The minimum area of triangle formed by tangent to the ellipse fraction numerator x to the power of 2 end exponent over denominator a to the power of 2 end exponent end fraction plus fraction numerator y to the power of 2 end exponent over denominator b to the power of 2 end exponent end fraction equals 1 and coordinate axes‐

    Maths-General
    General
    Maths-

    An ellipse has OB as semi minor axis, F and F to the power of † end exponent its focii and the angle FBF’ is a right angle Then the eccentricity of the ellipse is‐

    Therefore, the eccentricity of the ellipse isspace space fraction numerator 1 over denominator square root of 2 end fraction

    An ellipse has OB as semi minor axis, F and F to the power of † end exponent its focii and the angle FBF’ is a right angle Then the eccentricity of the ellipse is‐

    Maths-General

    Therefore, the eccentricity of the ellipse isspace space fraction numerator 1 over denominator square root of 2 end fraction

    General
    Maths-

    The number of values of c such that the straight line y=4x+c touches the curve left parenthesis x to the power of 2 end exponent divided by 4 right parenthesis plus y to the power of 2 end exponent equals 1 is‐

    Therefore, there are two values of c.

    The number of values of c such that the straight line y=4x+c touches the curve left parenthesis x to the power of 2 end exponent divided by 4 right parenthesis plus y to the power of 2 end exponent equals 1 is‐

    Maths-General

    Therefore, there are two values of c.

    parallel
    General
    Maths-

    Let P be any point on any directrix of an ellipse Then the chords of contact of point P with respect to the ellipse and its auxiliary circle intersect at

    Let P be any point on any directrix of an ellipse Then the chords of contact of point P with respect to the ellipse and its auxiliary circle intersect at

    Maths-General
    General
    maths-

    An ellipse having foci at (3, 3) and (-4,4) and passing through the origin has eccentricity equal to‐

    An ellipse having foci at (3, 3) and (-4,4) and passing through the origin has eccentricity equal to‐

    maths-General
    General
    maths-

    Normals A O comma A A subscript 1 end subscript comma A A subscript 2 end subscript are drawn to parabola y to the power of 2 end exponent equals 8 x from the pointA (h, 0) If triangle O A subscript 1 end subscript A subscript 2 end subscript( O being the origin) is equilateral, then possible value of h’ is

    Normals A O comma A A subscript 1 end subscript comma A A subscript 2 end subscript are drawn to parabola y to the power of 2 end exponent equals 8 x from the pointA (h, 0) If triangle O A subscript 1 end subscript A subscript 2 end subscript( O being the origin) is equilateral, then possible value of h’ is

    maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.